Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Therapeutic Micro-Nano Technology BioMEMs - Tejlal Desai & Sangeeta Bhatia

.pdf
Скачиваний:
85
Добавлен:
10.08.2013
Размер:
6.24 Mб
Скачать

INDEX

MEMS and, 113–114 nanoparticulates and, 206 photothermally modulated, 162 sustained, 172, 264

drug delivery, microdevices for oral, 237–259 introduction, 237–41

bioadhesion in gastrointestinal tract, 238–240 current challenges, 237–238

microdevice technology, 240–241 previous approach to, 238

materials for microfabrication, 241–243 poly(methyl methacrylate), 242–243 porous silicon, 242

silicon dioxide, 242 microfabrication, 243–247

pol(methyl methacrylate), 246–247, 249 porous silicon, 244–246, 248

process for creating porous silicon microdevices, 247

process for creating silicon dioxide microdevices, 243–244

silicon dioxide, 243–244

miocrodevice loading/release mechanisms, 253–258

bioavailibility studies, 257–258 Caco-2 in vitro studies, 255, 257 cell culture conditions, 255–256

confluency/tight junction formation, 256 lectin-modified microdevice adhesion,

256–257

porous silicon microdevices, 254–255 welled silicon dioxide/PMMA microdevices,

254

surface characterization, 251–253 surface chemistry, 247–251

aimine functionalization, 249 avidin immobilization, 251 lectin conjugation, 251

drug release over time, 201–202

ECM (extracellular matrix), 337, 328, 336 elastin peptides, 202, 203

ELISA (Sandwich-Type Enzyme Linked Immunosorbent Assay), 162

emphysema, 194, 204

encapsulation. See islet cell replacement EPD (electrophoretic deposition), 81

EPR (Electron Paramagnetic Resonance), 200 etching, 175–177, 243–244, 265, 269, 270, 356

fabrication methods/techniques. See also biosensing, multi-phenotypic cellular arrays for; islet cell replacement; tissue engineering, 3-D fabrication technology for

adhesive-mediated, 28–29

369

MEMS

etching, 175–177, 243–244, 265, 269, 270, 356 photolithography, 28, 56–57, 81–82, 265, 333 thin film deposition, 109, 265

for nanoporous membranes, 269–271 for supported membranes, 314–317

FDM (fused deposition modeling), 26 FEM (finite element modeling), 118 FGF (fibroblast growth factor), 6 Fick’s law, 271, 272, 277

FLIC (fluorescence interface constant microscopy), 308–309

fluorescence

gene expression/protein up-regulation markers, 84–85

bioluminescent proteins, 84–85 green fluorescent, 85

intracellular fluorescent probes, 86–87 porous silicon, 216

FRAP (fluorescence recovery after photobleaching), 307

FRET (fluorescence resonance energy transfer), 308, 309

glucose

detecting concentration of, 216 diffusion of, 180

transdermal extraction of, 229–230

hard lithography, 306

heart disease, pacemakers for, 172 heat-mediated 3-D fabrication, 24–27 hemophilia, 172

heparin, for transdermal drug delivery, 227–228 hepatocytes, 325, 334–336, 339

homing peptides. See vascular diagnosis/therapy, nanoparticle targeting for

hypoxia, 197–198

iconic self-complementary peptide. See Lego peptide idiopathic pulmonary fibrosis, 207

IgG diffusion, 183–185

imaging. See also biocompatible quantum dots (QDs) magnetic resonance, 106, 200, 205

nanoshells for molecular, 166–167 positron emission tomography, 200 radiography, 109, 203, 204, 208

in vivo live animal imaging, 150–152 immunoassays, 71–72

microfluidic examples of, 73–74

using smart beads, 301 nanoshells vs., 161–162 T-sensor device or, 72

in vitro, 146–149

370

implantable zero-order output devices, 273 implants. See controlled drug delivery, nanoporous

implants for indicator genes, 201 integrin adhesions, 328 intelligent systems, 216 interferon gamma, 207 interferon release, 272–273

intracellular fluorescent probes, 86–87 intracranial pressure monitoring, 110–112 ion channels, 255, 316–317

islet cell replacement, 171–189 biocapsule assembly/loading, 178–179 conclusions, 189

introduction, 171–175

cellular delivery/encapsulation, 172–174 MEMS/bioMEMS and, 171–172 microfabricated nanoporous biocapsule, 174–175

islet packing density, 186–189

microfabricated biocapsule membrane diffusion studies, 181–186

glucose diffusion, 182 IgG diffusion, 184–186

measured effective diffusion coefficients, 181 pore size vs. pore area, 181–182

nanoporous membrane/biocapsular environment, 179–180

nanoporous membrane fabrication, 175–178

lab-on-a-chip microsystem, 207. See also cell culture, microfluidic

laminar flow, 59–60 lectins, 239–240

adhesion of lectin-modified microdevices, 256–257 lectin conjugation, 251

Lego peptide, 40–41

liposomal delivery systems, 197–198 lithography techniques

hard, 306

photolithography, 33, 56–57, -81–82, 265, 3337 soft, 57–58, 82–83, 306, -355–357

LMWH (low-molecular weight heparin), 227–228 low-frequency sonophoresis. See transdermal drug

delivery, using low-frequency sonophoresis lung cancer, 194, 203–204. See also pulmonary

pathology

membrane technology, supported lipid bilayers for, 305–322

applications, 313–319

electrical manipulation, 316–317 live cell interactions, 317–319 membrane arrays, 313–314 membrane-coated beads, 314–316

conclusion, 319

INDEX

fabrication methodologies, 310–313 introduction, 305–306

physical characteristics of membranes, 306–310 long-range lateral mobility, 306–310

phase separation/collective mobility of phase-separated domains, 308-312

MEMS fabrication. See also neurosurgery, MEMS and etching, 107–108, 243–244

islet cell replacement and, 171–172 photolithography, 56–57, 81–83, 243, 248, 333 thin film deposition, 109, 265

metal nanoshells, diagnostic/therapeutic applications of, 157–166

gold nanoshells, 160–165 molecular imaging, 166–167

nanoshells vs. immunoassays, 161–165 photothermal ablation, 165–167 photothermally modulated drug delivery, 162

turnable optical properties of, 142–143 gold colloid growth into complete shell,

160–162

plasmon resonance, 160–162

microcontact printing, 45, 63, 82, 311–312, 313, 333, 336, 337, 357

microfabricated cells, 327

microfabricated nanoporous biocapsule, 174–175 microfabricated platforms, 241–244 microfabrication, 56–58

soft lithography PDMS structures, 57–58 microfluid. See cell culture, microfluidic; cell function,

advanced microfluidic assays for; smart bead based microfluidic chromatography

micro-/nanometer-scale needles, 201 microspheres, 14, 15–17, 241 microstamping, 356

microsyringe, pressure-assisted, 29 molding, 29–32

molecular ink peptides, 46–48

MRI (magnetic resonance imaging), 106, 200 mucoadhesion, 239

multi-phenotypic cellular arrays. See biosensing, multi-phenotypic cellular arrays for

muscle-cell fusion, 359

nano-channel diffusion, 276–277 NanoGATE technology, 269–271 nanoparticles, for drug delivery, 201

nanoparticle targeting. See vascular diagnosis/therapy, nanoparticle targeting for

nanoparticulates, for drug delivery, 201 nanoporous implant diffusion studies, 263–283

bovine serum albumin release data, 273–276 interferon release data, 272–273

modeling and data fitting, 276–277 results interpretation, 275–276

INDEX

nanosensors, 146–147 nanoshells. See metal nanoshells,

diagnostic/therapeutic applications of needles, micro-/nanometer-scale, 201

nerve graft, 4

neural prostheses, 112–113

neural regeneration, 3–17, 118–121

axonal outgrowth promotion in CNS/PNS, 4–6 inhibitory effects alleviation, 6

response after injury, 4 substrates for support, 5 trophic factors to stimulate, 5–6

conclusion, 17 introduction, 3

spatially controlling protein release, 6–13 cell transplants, 12–13

chemical vs. photochemical crosslinkers, 8–11 contact guidance regeneration strategy, 10–11 nerve guide conduits for axonal regeneration, 11 other hydrogel scaffolds, 10

permissive bioactive hydrogel scaffolds, 7 temporally controlling protein release, 13–17

demand driven release of trophic factors, 17 embedded microspheres, 13–14

lipid microtubules, 16 osmotic pumps, 13–14 neurosurgery, MEMS and, 95–120

applications, 107–111 conventional treatments, 99–104

brain tumors, 101–102

degenerative disease of the spine, 104–105 hydrocephalus, 99–101

Parkinson’s disease, 103–104 defining neurosurgery, 95 evolution of neurosurgery, 106–107 future prospects, 120

history of neurosurgery, 95–99

obstacles to neurosurgical employment of MEMS, 108–111

biocompatibility assessment, 109–110 opportunities, 110–120

drug delivery systems, 113–114 intracranial pressure monitoring, 110–112 neural prostheses, 112–113

neural regeneration, 118–120

smart surgical instruments/minimally invasive surgery, 114–116

in vivo spine biomechanics, 116–118 NGF (nerve growth factor), 5–6 non-communicating hydrocephalus, 99

ODN (oligonucleotides), 228

optical nanostructure template, 217–219

oral drug delivery. See drug delivery, microdevices for oral

371

organ transplant, 326 osmotic pumps, 13–14

Ostwald Ripening process, 140

pacemakers, 172

PAM (pressure-assisted microsyringe), 29 Parkinson’s disease, 103–104 Particle-in-a-box, 144

patterning

cell adhesion and

cell-matrix interactions, 336–337 cell-to-cell interactions, 333–336 3-D patterning, 338

substrate mechanics patterning, 339–340 surface patterning, 332–333

individual microfluidic channels, 61–62 photopatterning, 32–33

surface, in array fabrication, 81

PDMS (polydimethylsiloxane) stamp, 312, 333, 336

PDMS (poly(dimethylsiloxane) structures, 57–58, 82

PEG-based polymers, 338 PEG biotin, 301 PEG-hydrogels, 83, 88–89 PEG IPN, 357–359

peptide nanobiomaterials, 39–52

biological material construction units, 40–47 Lego peptide, 41–42

molecular ink peptides, 45–47 surfactant/detergent peptides, 42–45

introduction, 40

peptide surfactants/detergents, 52 perspective/remarks, 52–53

for tissue engineering/regenerative medicine, 47–52

ideal synthetic biological scaffolds, 47 peptide scaffolds, 47–49

PuraMatrix, 49–52

peptides. See peptide nanobiomaterials; vascular diagnosis/therapy, nanoparticle targeting for

PET (positron emission tomography), 199 photolithography, 56–57, 81–83, 265, 338, 356 photopatterning, 32–34

photothermal ablation, 165–166 plasmon resonance, 157–159 PLLA (Ply (L-Lactide), 10–11 PMMA microdevices, 252

PMMA (poly(methyl) methacrylate), 242–243, 253–257

PNIPAAm, 293–294, 297–298, 301 PNIPAAm-streptavidin particle system, 293–294 PNS (peripheral nervous system). See neural

regeneration poly(ethylene) glycol hydrogels, 83

372

polymers, 242, 338. See also smart polymer technologies in biomedicine

porous silicon, 216–217, 244, 245–252, 254 porous silicon microdevices, 249, 254–255 pretreatment sonophoresis, 225, 226 printing

microcontact, 45, 82, 311–312, 313, 333, 336, 337–338, 357

three-dimensional, 28–29 proteins. See neural regeneration pulmonary embolism, 194 pulmonary fibrosis, 207 pulmonary infections, 207–208 pulmonary pathology, 193–208

applications for lungs, 197–199

devices with nanometer-scale features, 198 liposomes, 197–198

molecularly derived therapeutics, 197–198 introduction, 194–195

challenges for nanotechnology devices, 195–196 limitations for nanotechnology in, 195–96

potential uses of nanotechnology, 198–207 diagnostics, 199–202

disease markers/localization, 199 imaging, 199

evolving nanotechnology, 203–207 asthma, 206

lung cancer, 203–204 pulmonary fibrosis, 207 pulmonary infections, 207–208

pulmonary thromboembolic disease, 204–205 therapeutics, 201–203

mechanical/structural interventions, 202–203 therapeutic agent delivery, 201–203

pulmonary thromboembolic (PTE) disease, 204–205 PuraMatrix

compatibility with bioproduction/clinical application, 51–52

extensive neurite outgrowth/active synapse formation on, 50

as synthetic origin/clinical-grade quality, 51 tailor-made, 51–52

QD-based molecular barcodes, 147–149 quantum dots. See biocompatible quantum dots

(QDs)

radiative recombination, 143 radiography, 204

computerized tomography, 107, 200 positron emission tomography, 199

radiosurgery, stereotactic, 102–103

RAFT (reversible addition fragmentation chain transfer), 293

rafts, cell membrane, 305, 308

INDEX

regenerative medicine. See peptide nanobiomaterials rhDNAase, 197

RICM (reflection interference contrast microscopy), 308–310

SAMs (self-assembled monolayers), 331, 357 scaling effects, 59

silicon-based porous materials, 215–216 silicon dioxide, 242, 243–244, 245, 254

simultaneous sonophoresis, 225. See also transdermal drug delivery, using low-frequency sonophoresis

smart polymer technologies in biomedicine, 289–301

introduction

smart bead based microfluidic chromatography, 296–301

affinity chromatography, 298–300 bioanalysis devices, 298

future of, 301 introduction, 396–297

smart bead preparation, 397–398

smart meso-scale particle systems, 291–296 aggregation mechanism, 290 applications, 291

introduction, 291–293

potential uses in diagnostics/therapy, 296 properties of PNIPAAm-streptavidin particle

system, 293–294

protein switching using aggregation switch, 294–296

smart polymers, 294–296 aggregation mechanism, 294–296

smart surgical instruments/minimally invasive surgery, 114–116

soft lithography, 57–58, 82–83, 347, 355–358 sonophoresis. See transdermal drug delivery, using

low-frequency sonophoresis spine biomechanics, 116–118

STDs (sexually transmitted diseases), 298 stereotactic radiosurgery, 102–103 surface-based assays, 147

surface patterning, 81 surface tension, 60–61

surfactant/detergent peptides, 40–45 sustained drug delivery, 172, 268

T cells, 319–320

temperature sensitive polymer, 290–292, 296–297 templated nano materials, 217

TEM (transmission electron micrograph), 200 tension hydrocephalus, 99

thermochemical bifunctional crosslinkers, 8–9 three 3-DP (three-dimensional printing), 28–29 thromboembolic disease, 197

INDEX

tissue engineering, 3-D fabrication technology for, 23–34

acellular constructs, 24–30 adhesive-mediated fabrication, 28–29

pressure-assisted microsyringe, 29 three-dimensional printing, 28–29

heat-mediated 3-D, 24–27 3-D plotting, 26–27

fused deposition modeling, 26 ply(DL-lactic-co-glycolic) acid, 24–26 selective laser sintering, 26

indirect fabrication by molding, 29–30 light-mediated fabrication, 27–28

cellular construct, 30–31 future directions, 34

hybrid cell/scaffold constructs, 31–34 cell-laden hydrogel scaffolds by molding,

31–32

cell-laden hydrogel scaffolds by photopatterning, 32–34

introduction, 23–24

tissue plasminogen activators, 197 top-down approach, 39, 269–272

transdermal drug delivery, using low-frequency sonophoresis, 223–232

advantages of, 228–229

avoiding drug degradation in gastrointestinal tracts, 223

better patient compliance, 223 sustained release of drug, 224

low-frequency sonophoresis, 225–226 macromolecular delivery, 226–229

low-molecular weight heparin, 227–228 oligonucleotides, 228

peptides and proteins, 226–227 vaccines, 228–229

mechanisms of low-frequency sonophoresis, 230–232

373

transdermal glucose extraction using sonophoresis, 229–230

ultrasound in medical applications, 224 ultrasound-mediated transdermal transport,

224–225 transdermal drug release, 172

transdermal glucose extraction using sonophoresis, 229–230

transplanted cell rejection, 172

T-sensor device for diffusion immunoassay, 72

tumor-homing peptides, 129–130

ultrasound, 165, 200–205, 207, 224–225. See also transdermal drug delivery, using low-frequency sonophoresis Ultrastructure-Accounting Characterization Mode

Ultrasound, 207

vaccines, 228–229 for cancer, 207 injection of, 201

vascular diagnosis/therapy, nanoparticle targeting for, 127–133

agent delivery, 201

features of vessels in disease, 129–131 angiogenesis, 129–130

future directions, 133–134 homing peptides, 132 introduction, 127–129 nanoparticle targeting, 132–133

in vivo phage display in vascular analysis, 130

venous thrombosis, 194

welled microdevices, 244, 254

xenograft, 114, 151, 173–174, 184

Abbreviated Table of Contents

List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

I.

Cell-based Therapeutics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

1.

Nanoand Micro-Technology to Spatially and Temporally Control

 

 

Proteins for Neural Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

 

Anjana Jain and Ravi V. Bellamkonda

 

2.

3-D Fabrication Technology for Tissue Engineering . . . . . . . . . . . . . . . . . . . . . .

23

 

Alice A. Chen, Valerie Liu Tsang, Dirk Albrecht, and Sangeeta N. Bhatia

 

3.

Designed Self-assembling Peptide Nanobiomaterials . . . . . . . . . . . . . . . . . . . . . .

39

 

Shuguang Zhang and Xiaojun Zhao

 

4.

At the Interface: Advanced Microfluidic Assays for Study of Cell Function

55

 

Yoko Kamotani, Dongeun Huh, Nobuyuki Futai, and Shuichi Takayama

 

5.

Multi-phenotypic Cellular Arrays for Biosensing . . . . . . . . . . . . . . . . . . . . . . . . .

79

 

Laura J. Itle, Won-Gun Koh, and Michael V. Pishko

 

6.

MEMS and Neurosurgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

 

Shuvo Roy, Lisa A. Ferrara, Aaron J. Fleischman, and Edward C. Benzel

 

II. Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

125

7.

Vascular Zip Codes and Nanoparticle Targeting . . . . . . . . . . . . . . . . . . . . . . . . . .

127

Erkki Ruoslahti

8. Engineering Biocompatible Quantum Dots for Ultrasensitive,

Real-Time Biological Imaging and Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Wen Jiang, Anupam Singhal, Hans Fischer, Sawitri Mardyani, and Warren C. W. Chan

9. Diagnostic and Therapeutic Applications of Metal Nanoshells . . . . . . . . . . . . 157

Leon R. Hirsch, Rebekah A. Drezek, Naomi J. Halas, and Jennifer L. West

10. Nanoporous Microsystems for Islet Cell Replacement . . . . . . . . . . . . . . . . . . . . 171

Tejal A. Desai, Teri West, Michael Cohen, Tony Boiarski, and Arfaan Rampersaud

11. Medical Nanotechnology and Pulmonary Pathology . . . . . . . . . . . . . . . . . . . . . .

193

Amy Pope-Harman and Mauro Ferrari

12.

Nanodesigned Pore-Containing Systems for Biosensing and Controlled

 

 

Drug Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

213

 

Fred´erique´ Cunin, Yang Yang Li, and Michael J. Sailor

 

13.

Transdermal Drug Delivery using Low-Frequency Sonophoresis . . . . . . . . . .

223

 

Samir Mitragotri

 

14.

Microdevices for Oral Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

237

 

Sarah L. Tao and Tejal A. Desai

 

15.

Nanoporous Implants for Controlled Drug Delivery . . . . . . . . . . . . . . . . . . . . . .

263

 

Tejal A. Desai, Sadhana Sharma, Robbie J. Walczak, Anthony Boiarski,

 

 

Michael Cohen, John Shapiro, Teri West, Kristie Melnik, Carlo Cosentino,

 

 

Piyush M. Sinha, and Mauro Ferrari

 

III. Molecular Surface Engineering for the Biological Interface . . . . . . . . . . . . . . . . . 287

16. Micro and Nanoscale Smart Polymer Technologies in Biomedicine . . . . . . . . 289

Samarth Kulkarni, Noah Malmstadt, Allan S. Hoffman, and Patrick S. Stayton

17. Supported Lipid Bilayers as Mimics for Cell Surfaces . . . . . . . . . . . . . . . . . . . .

305

Jay T. Groves

18. Engineering Cell Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Kiran Bhadriraju, Wendy Liu, Darren Gray, and Christopher S. Chen

19. Cell Biology on a Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Albert Folch and Anna Tourovskaia

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367