Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

fizika

.pdf
Скачиваний:
192
Добавлен:
17.05.2015
Размер:
4.42 Mб
Скачать

Задачи для контрольных работ

421

6.86

Крутильные колебания тел описываются уравнением ϕ = ϕ0 e–βt cos ωt.

Найти угловое ускорение тела в момент t = 0.

6.87

Крутильные колебания тел описываются уравнением ϕ = ϕ0 e–βt cos ωt.

Найти моменты времени, когда угловая скорость становится максимальной.

6.88

Некоторая точка совершает затухающие колебания с частотой ω = 25 рад/с. Найти коэффициент затухания β, если в начальный момент скорость точки равна нулю, а ее смещение из положения равновесия в η = 1,02 раза меньше амплитуды.

6.89

Точка совершает затухающие колебания с частотой ω и коэффициентом затухания β. Найти амплитуду скорости точки как функцию времени t, если в момент t0 = 0 амплитуда ее смещения равна A.

Вынужденные колебания. Резонанс

6.90

Шарик массой m может совершать незатухающие гармонические колебания около точки х = 0 с собственной частотой ω0. В момент t = 0, когда шарик находился в положении равновесия, к нему приложили вынуждающую силу F = F0 cos Ω t, совпадающую по направлению с осью х. Найти уравнение вынужденных колебаний шарика х (t).

6.91

Колебательная система совершает затухающие колебания с частотой ν = 1000 Гц. Определить частоту ω0 собственных колебаний, если резонансная частота Ωp = 998 Гц.

6.92

Определить, насколько резонансная частота отличается от частоты ν0 = 1 кГц собственных колебаний системы, характеризуемой коэффициентом затухания β = 400 с–1.

6.93

К пружине с коэффициентом упругости k = 10 Н/м подвесили груз с массой m = 10 г и погрузили всю систему в вязкую среду. Ко-

422

Глава 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

эффициент сопротивления равен r = 0,1 кг/с. Определить частоту ω0 собственных колебаний.

6.94

Амплитуды вынужденных гармонических колебаний при частотах ν1 = 400 Гц и ν2 = 600 Гц равны между собой. Определить резонансную частоту Ωp.

6.95

Тело совершает вынужденные колебания в среде с коэффициентом сопротивления r = 1 г/с. Считая затухание малым, определить амплитуду вынуждающей силы, если резонансная амплитуда А = 0,5 см и частота собственных колебаний ω0 = 10 Гц.

6.96

Пружинный маятник (коэффициент упругости пружины k = 10 Н/м, с массой груза m = 100 г) совершает вынужденные колебания в вязкой среде с коэффициентом сопротивления r = 0,02 кг/с. Определить коэффициент затухания β и резонансную амплитуду А, если амплитудное значение вынуждающей силы F0 = 10 мН.

6.97

При какой скорости поезда рессоры его вагонов будут максимально колебаться под действием толчков колёс о стыки рельсов, если длина рельсов A = 12,5 м, нагрузка на рессоры m = 5,5 т и рессора прогибается на x = 16 мм при нагрузке в одну тонну.

6.98

Найти максимальное значение амплитуды смещения осциллятора, совершающего установившиеся колебания под действием вынуждающей периодической силы с амплитудой F0 = 2,5 Н, если циклическая частота затухающих колебаний данного осциллятора ω = 100 рад/с и коэффициент сопротивления r = 0,5 кг/с.

6.99

Найти разность фаз между смещением и вынуждающей силой при резонансе смещения, если собственная частота колебаний ω0 = 50 рад/с и коэффициент затухания β = 5,2 с–1.

6.100

Гиря с массой m = 20 г, подвешенная на пружине с коэффициентом упругости k = 50 Н/м, совершает колебания в вязкой среде с коэффициентом сопротивления r = 0,2 Н/с. На верхний конец пружины действует вынуждающая сила, изменяющаяся по закону

F = 0,2 cos Ωt, в ньютонах. Определить:

Задачи для контрольных работ

423

а) частоту Ω вынужденных колебаний; б) резонансную частоту; в) резонансную амплитуду.

6.101

Гиря с массой m = 0,5 кг, подвешенная на пружине с коэффициентом упругости k = 50 H/м, совершает колебания в вязкой среде с коэффициентом сопротивления r = 0,5 кг/с. На верхний конец пружины действует вынуждающая сила, изменяющаяся по закону F = 0,1 cos Ωt. Определить для данной колебательной системы коэффициент затухания и резонансную амплитуду.

6.102

Определить резонансную частоту колебательной системы, если собственная частота колебаний ν0 = 300 Гц, а логарифмический декремент затухания λ = 0,2.

6.103

Собственная частота колебаний системы ω0 = 500 рад/с. Определить частоту ω затухающих колебаний этой системы, если резонансная частота Ωp = 499 рад/с.

6.104

Гиря массой m = 400 г, подвешенная на пружине с коэффициентом упругости k = 40 Н/м, опущена в масло. Коэффициент сопротивления среды r = 0,5 кг/с. На верхний конец пружины действует вынуждающая сила, изменяющаяся по закону F = cos Ωt .

Определить:

1)резонансную амплитуду.

2)частоту вынуждающей силы, при которой амплитуда вынужденных колебаний максимальна.

6.106

Тело совершает вынужденные колебания. При частоте ν1 = 200 Гц амплитуда колебаний А1 = 10 см, при частоте ν2 = 210 Гц амплитуда А2 = 4 см. Найти коэффициент затухания β системы и собственную частоту ω0 колебаний, если удельная амплитуда вынуждающей силы

F

равнялась m = 210 Н/г.

6.107

На тело массой m = 10 г действует сила упругости с коэффициентом k = 4 Н/м, сила сопротивления среды и периодическая вынуждающая сила F = 10k cos 120t, в ньютонах.

424

Глава 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

Какой коэффициент сопротивления соответствует амплитуде смещения A = 8 см? Чему равна средняя кинетическая энергия за половину периода в этом случае?

6.108

Шарик массой m может совершать незатухающие гармонические колебания около точки х = 0 с собственной частотой ω0. В момент t = 0, когда шарик находился в состоянии равновесия, к нему приложили вынуждающую силу F = cos Ω t, совпадающую по направлению с осью х. Найти уравнение вынужденных колебаний шарика х (t).

6.109

Во сколько раз амплитуда вынужденных колебаний меньше резонансной амплитуды, если частота изменения вынуждающей силы больше резонансной частоты на 10 %? Коэффициент затухания β принять равным 0,1 ω0 0 — круговая частота собственных колебаний).

6.110

Шарик массой m, подвешенный к пружинке, удлиняет последнюю на величину A. Под действием внешней вертикальной силы, меняющейся по гармоническому закону с амплитудой F0, шарик совершает вынужденные колебания. Логарифмический декремент затухания равен λ. Пренебрегая массой пружинки, найти круговую частоту вынуждающей силы, при которой амплитуда смещения шарика максимальна. Каково значение этой амплитуды?

6.111

Амплитуды смещений вынужденных гармонических колебаний при частотах ω1 = 400 рад/с и ω2 = 600 рад/с равны. Найти частоту, при которой амплитуда максимальна.

6.112

При частотах вынуждающей гармонической силы ω1 и ω2 амплитуда скорости частицы равна половине максимального значения. Найти частоту, соответствующую резонансу скорости.

6.113

При частотах вынуждающей гармонической силы ω1 и ω2 амплитуда скорости частицы равна половине максимального значения. Найти коэффициент затухания β и частоту затухающих колебаний ω частицы.

Задачи для контрольных работ

425

6.114

Период собственных колебаний пружинного маятника равен Т0 = 0,55 с. В вязкой среде период того же маятника стал равным Т = 0,56 с. Определить резонансную частоту колебаний.

6.115

Под действием внешней вертикальной силы F = cos Ωt тело, под-

вешенное на пружине, совершает установившиеся вынужденные колебания по закону x = Acos(Ωt − ϕ0 ) .

Найти работу силы F за период колебаний.

6.116

К пружине с коэффициентом упругости k = 10 Н/м подвесили груз массой m = 10 г и погрузили систему в вязкую среду. Приняв коэффициент сопротивления равным r = 0,1 кг/с, определить резонансную частоту Ωp.

6.117

Шарик массой m = 50 г подвешен на невесомой пружинке жесткости k = 20 Н/м. Под действием вынуждающей вертикальной гармонической силы с частотой Ω = 25 рад/с шарик совершает установившиеся колебания с амплитудой A = 1,3 см. При этом смещение шарика отстает по фазе от вынуждающей силы на ϕ = 3π/4. Найти работу вынуждающей силы за период колебания.

6.118

Шарик массой m, подвешенный на невесомой пружинке, может совершать вертикальные колебания с коэффициентом затухания β. Собственная частота колебаний ω0. Под действием внешней вертикальной силы F = F0 cos Ωt шарик совершает установившиеся гармонические колебания. Найти среднюю за период мощность силы F.

6.119

Шарик массой m, подвешенный на невесомой пружине, может совершать вертикальные колебания с коэффициентом затухания β. Собственная частота колебаний равна ω0. Под действием внешней вертикальной силы F = F0 cos Ωt шарик совершает установившиеся гармонические колебания. Найти частоту Ω, при которой средняя мощность силы максимальна.

6.120

Гирька массой m = 0,2 кг, висящая на вертикальной пружине, совершает затухающие колебания с коэффициентом затухания β = 0,75 с–1. Коэффициент упругости пружины k = 0,5 кг/см. Начертить зависимость амплитуды А вынужденных колебаний гирьки от частоты Ω

426

Глава 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

внешней периодической силы, если амплитуда возмущающей силы равна F0 = 0,98 Н. Для построения графика найти значения А для сле-

дующих частот: Ω = 0, Ω = 0,5ω0, Ω = 0,75ω0, Ω = ω0, Ω = 1,5ω0 и Ω = 2ω0, где ω0 — частота собственных колебаний подвешенной гирки.

6.121

По грунтовой дороге прошел трактор, оставив следы в виде ряда углублений, находящихся на расстоянии A = 30 см друг от друга. По этой дороге покатили детскую коляску, имеющую две одинаковые рессоры, каждая из которых прогибается на x = 2 см под действием груза массой m1 = 1 кг. С какой скоростью катили коляску, если от толчков на углублениях она, попав в резонанс, начала сильно раскачиваться? Масса коляски m2 = 10 кг.

6.122

Тело массой m = 10 г совершает затухающие колебания с начальной фазой, равной нулю, и коэффициентом затухания β = 1,6 с–1. На это тело начала действовать внешняя периодическая сила, под действием которой установились вынужденные колебания. Уравнение вынужденных колебаний х = 5 sin (10πt – 0,75 π). Найти уравнение внешней периодической силы.

6.123

К пружине c коэффициентом упругости k = 10 Н/м подвесили груз массой m = 10 г и погрузили всю систему в вязкую среду. Приняв коэффициент сопротивления равным r = 0,1 Н/с, определить резонансную амплитуду А, если вынуждающая сила изменяется по гармоническому закону и ее амплитудное значение F = 0,02 H.

6.124

На тело массой m = 10 г действует сила упругости с коэффициентом k = 4 Н/м, сила сопротивления среды и периодическая возмущающая сила F = 10k cos 120t. Какой коэффициент сопротивления соответствует амплитуде А = 8 см? Чему равна средняя кинетическая анергия за половину периода в этом случае?

6.125

Определить логарифмический декремент затухания λ колебательной системы, для которой резонанс наблюдается при частоте, меньшей собственной частоты ω0 = 10 рад/с на ω0 = 2 рад/с.

Задачи для контрольных работ

427

Механические волны

6.126

От источника колебаний распространяется волна вдоль прямой линии. Амплитуда колебаний A = 0,1 м. Вычислить смещение точки, удаленной от источника на расстоянии A = 3/4 длины волны в момент, когда от начала колебаний источника прошло время t = 0,9 T колебаний?

6.127

Уравнение плоской волны ξ(x,t) = 6 106 cos(1900t + 5, 72x) . Во сколько раз скорость распространения волны больше максимальной скорости движения частиц среды?

6.128

Уравнение плоской волны ξ(x,t) = 6 106 cos(1900t + 5, 72x) . Найти расстояние между ближайшими точками волны, колеблющимися в противоположных фазах.

6.129

Уравнение плоской волны имеет вид

ξ(x,t) = 6 106 cos(1900t + 5, 72x) .

Вычислить сдвиг фаз между колебаниями двух точек, расположенных вдоль луча на расстоянии A = 37 см.

6.130

Однородная веревка массой m и длиной L подвешена за один конец вертикально. Вычислить время движения волнового импульса от нижнего конца до верхнего.

6.131

Вычислить длину продольной волны частотой ν = 7000 Гц, распространяющейся вдоль железного стержня. Модуль Юнга для железа Е = 19,6 · 1010 Н/м2.

6.132

Определить скорость распространения продольных волн в меди. Модуль Юнга для меди Е = 11,8 · 1010 Н/м2.

6.133

Скорость распространения продольных упругих колебаний в металлическом стержне равна v = 5500 м/с. Модуль Юнга материала стержня Е = 7,95 · 1010 Н/м2. Определить плотность металла.

428

Глава 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

6.134

Найти модуль упругости металла, если скорость звука в этом металле u = 4700 м/с, а его плотность ρ = 8,6 · 103 кг/м3.

6.135

На расстоянии A1 = 100 км от очага землетрясения зарегистриро-

вана сейсмическая волна с интенсивностью I = 1,4 · 106 Дж . Чему

м2 с

равна мощность, приходящая на поверхность площадью S = 5 м2, в точке, расположенной на расстоянии A2 = 2000 м от очага землетрясения?

6.136

Уравнение колебаний, создаваемое источником, дано в виде ξ(t) = 10sin 0,5πt . Записать уравнение колебаний для точки, отстоящей от источника колебаний на L = 600 м, если скорость распространения колебаний u = 300 м/с.

6.137

Уравнение колебаний, создаваемых источником, ξ(t) = 10sin 0,5πt. Записать уравнение колебания для точки волны в момент t = 4 с после начала колебаний.

6.138

Уравнение колебаний, создаваемых источником, ξ(t) = 4sin 600πt. Вычислить смещение от положения равновесия точки, находящейся на расстоянии A = 0,75 м от источника колебаний, через t = 0,01 с после начала колебаний, если скорость распространения колебаний u = 300 м/с.

6.139

Уравнение колебаний, создаваемых источником, ξ(t) = sin 0, 025πt . Вычислить скорость и ускорение точки, находящейся на расстоянии A = 20 м от источника колебаний, через t = 1 с после начала колебаний, если скорость распространения колебаний u = 100 м/с.

6.140

На расстоянии A1 = 100 км от очага землетрясения зарегистриро-

6

Дж

 

вана сейсмическая волна интенсивностью I = 1.4·10

 

. Чему рав-

м2 с

на интенсивность в точке, расположенной на расстоянии A2 = 2000 м от очага землетрясения?

Задачи для контрольных работ

429

6.141

Какую разность фаз будут иметь колебания двух точек, находящихся на расстояниях соответственно A1 = 10 м и A2 = 16 м от источника колебаний, если период колебаний Т = 0,04 с, скорость распространения колебаний u = 300 м/с?

6.142

Найти смещение от положения равновесия точки, отстоящей от

источника колебаний на расстоянии A =

 

λ

, для момента t =

T

, если

12

6

амплитуда колебаний А = 0,05 м.

 

 

 

 

 

 

 

6.143

 

 

 

 

 

Найти длину бегущей волны, если смещение от положения равновесия точки, находящейся на расстоянии A = 0,04м от источника

колебаний в момент t =

T

, равно половине амплитуды.

6

6.144

 

 

 

Определить скорость u распространения волн в упругой среде, если разность фаз Δϕ колебаний двух точек, отстоящих друг от друга

на x =15 см, равна π . Частота колебаний ν = 25 Гц.

6.145 2

Определить разность фаз между колебаниями двух точек среды, находящихся на расстоянии A = 10 см друг от друга, если в среде распространяется плоская волна вдоль линии, соединяющей эти точки. Скорость распространения волны u = 340 м/с, частота колебания источника ν = 1000 Гц.

6.146

Волна распространяется в упругой среде со скоростью u = 100 м/с. Наименьшее расстояние между точками среды, фазы колебаний которых противоположны, A = 1 м. Определить частоту колебаний.

6.147

Определить скорость распространения волн в упругой среде, если разность фаз колебаний двух точек среды, отстоящих друг от друга на расстояние L = 0,1 м, равна Δϕ = 60°. Частота колебаний ν = 25 Гц.

430

Указания к выполнению контрольной работы

УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Каждая контрольная работа должна быть выполнена в отдельной тетради, на обложке которой необходимо указать следующие данные:

раздел предмета, по которому выполняется контрольная работа (механика, электромагнетизм, оптика, атомная физика),

ФИО,

шифр студента,

домашний адрес,

номер контрольной работы,

курс,

ФИО преподавателя,

год издания пособия.

Номер варианта контрольных работ следует выбрать из следующей таблицы по сочетанию первой буквы фамилии и последней цифры шифра студента.

Последняя цифра шифра

1

2

3

4

 

5

6

 

7

8

9

0

Первая буква фамилии

 

 

 

 

ВАРИАНТ

 

 

 

 

от А до Ж

1

2

3

4

 

5

6

 

7

8

9

10

от З до О

11

12

13

14

 

15

16

 

17

18

19

20

от П до Я

21

22

23

24

 

25

26

 

27

28

29

30

Пример.

Студент Пушкин А. С., последняя цифра шифра которого 5, должен выполнять вариант № 25.

На первой странице контрольной работы следует:

записать в соответствии с выбранным вариантом строчку из таблицы № 1 или № 2 Пример

Контрольная работа № 1. Поступательное движение

ВАРИАНТ

ТЕСТЫ

ЗАДАЧИ

ВОПРОСЫ

1

ТМ1.1, ТМ2.11,

М1.1, М2.4,

стр.16-1, стр. 42-6-1,2,

 

Т1.3, Т2.29, Т3.1,

1.1, 2.10, 3.1,

стр.65-3, стр.82-2,

 

Т3.31

3.31

стр.131-9, стр.146-6

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]