- •"Томский политехнический университет"
- •Предисловие
- •Тема 1 Предмет экономико-математического моделирования
- •Моделирование как метод научного познания
- •Классификация экономико-математических моделей
- •Этапы экономико-математического моделирования
- •Взаимосвязи этапов
- •Моделирования
- •Тема 2 Системный подход к изучению экономических явлений Системный анализ как научная дисциплина
- •Вычислительная техника в системном анализе
- •Системный подход Основные определения: элементы, связи, система
- •Принципы системного подхода
- •Об использовании принципов системного подхода
- •Тема 3 Математические методы
- •И основные классы задач оптимизации
- •Общая постановка математической модели задач
- •Оптимизации
- •Тема 4 Линейное программирование
- •Пример решения станковой задачи
- •Симплекс-метод решения задач линейного программирования
- •Свойства опорных решений
- •Решение задач линейного программирования симплекс-методом
- •Конечность симплекс-метода
- •Метод искусственного базиса для отыскания начального опорного решения
- •Двойственность в линейном программировании
- •Виды математических моделей двойственных задач
- •Тема 5 Целочисленное программирование
- •Постановка задачи и метод решения
- •Метод Гомори
- •Составление дополнительного ограничения (сечения Гомори)
- •Тема 6 Транспортная задача
- •Построение первоначального опорного плана
- •Метод минимальной стоимости
- •Определение оптимального плана транспортных задач, имеющих некоторые усложнения в их постановке
- •Тема 7 Нелинейное программирование
- •Теорема Куна – Таккера
- •Тема 8 Регрессионный анализ
- •Тема 9 Игровые методы обоснования решений
- •Основные термины
- •Постановка задачи и выбор критерия оптимизации
- •Построение математической модели
- •Исследование математической модели
- •0Ропт.1; 0qопт.1.
- •Упрощение платёжной матрицы
- •Тема 10 Основы сетевого планирования и управления
- •Параллельности работ
- •Временные параметры сетевого графика
- •Алгоритм расчёта ранних сроков начал и окончаний работ
- •Критическое время и критический путь
- •Алгоритм построения критического пути
- •Исследование сетевой модели
- •Оптимизация сетевых моделей
- •Тема 11 Задачи упорядочения. Задачи управления запасами. Задачи замены оборудования
- •Классификация задач упорядочения
- •Детерминированная задача упорядочения Постановка задачи и выбор критерия оптимизации
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Построение математической модели
- •Исследование математической модели
- •Задачи управления запасами
- •Классификация задач управления запасами
- •Однопродуктовая детерминированная задача управления запасами Постановка задачи и выбор критерия оптимизации
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Построение математической модели
- •Исследование математической модели
- •Задача управления запасами с учётом убытков
- •Постановка задачи
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Построение математической модели
- •Исследование математической модели
- •Задачи замены оборудования
- •Классификация задач замены оборудования
- •Задача замены оборудования длительного пользования Постановка задачи. Выбор критерия оптимизации
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Построение математической модели
- •Исследование математической модели
- •Задача замены оборудования с целью предупреждения отказа Постановка задачи и выбор критерия оптимизации
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Построение математической модели
- •Исследование и решение математической модели
- •Тема 12 Задачи массового обслуживания
- •Классификация смо
- •Задачи анализа одноканальных систем массового обслуживания
- •Задача анализа детерминированной системы Постановка задачи
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Построение математической модели
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Построение математической модели
- •Исследование математической модели
- •Задача анализа замкнутой системы с ожиданием (потоки требований пуассоновские) Постановка задачи
- •Выявление основных особенностей, взаимосвязей и количественных закономерностей
- •Построение математической модели
- •Исследование и решение математической модели
- •Тема 13 Балансовые методы согласования
- •Ресурсов и потребностей
- •Анализ хозяйственных связей с помощью моделей
- •Межотраслевого баланса
- •Принципиальная схема межотраслевого баланса
- •Экономико-математическая модель межотраслевого баланса
- •2. Определить объёмы валовой продукции отраслей x1, x2,…, Xn по заданным объёмам конечного продукта y1, y2,…,Yn по формуле
- •Пример построения экономико-математической модели межотраслевого баланса и его расчёта для случая трёх отраслей
- •Экономическая природа коэффициентов прямых и полных затрат и их расчёт
- •Тема 14 Многокритериальные задачи
- •Классификация методов многокритериальной оценки альтернатив
- •Пример определения конкурентоспособности наукоемкой продукции на основе показателя “значимость технического решения” порогами несравнимости
- •Тема 15 Моделирование в условиях нечеткой информации
- •Нечеткие высказывания Нечеткими высказываниями называют высказывания следующего вида:
- •Тема 16 Моделирование процесса принятия решений
- •Интегральная модель определения конкурентоспособности продукции
- •Определение нечетких коэффициентов весомости критериев оценки конкурентоспособности продукции
- •Математическая модель рейтинговой оценки конкурентоспособности продукции
- •Отбор кандидатов в эксперты методом многокритериального выбора альтернатив с использованием правила нечеткого логического вывода
- •Заключение
- •Список литературы
- •Оглавление
Выявление основных особенностей, взаимосвязей и количественных закономерностей
Поток требований, обладающий свойством стационарности и отсутствием последействия, называется простейшим. В нашей задаче поток требований простейший. Основным понятием при анализе процесса СМО является состояние системы. Зная состояние системы, можно предсказать в вероятностном смысле её поведение.
Простейший поток – это стационарный пуассоновский поток. Если все потоки событий, переводящие систему из одного состояния в другое, являются пуассоновскими, то для этих систем вероятности состояний описываются с помощью системы обыкновенных дифференциальных уравнений.
С























уществует
определённый методический прием, намного
облегчающий вывод дифференциальных
уравнений для вероятностей состояний.
Первоначально строится размеченный
граф состояний с указанием возможных
переходов – это облегчает исследование
и делает его более наглядным.

Рис. 12.3. Размеченный граф состояний одноканальной разомкнутой СМО с ожиданием
Граф состояний, на котором проставлены не только стрелки переходов, но и интенсивность соответствующих потоков событий, называют размеченным.
Построение математической модели
Если составлен размеченный граф состояний, то для построения математической модели, т.е. для составления системы обыкновенных дифференциальных уравнений вероятностей состояний, рекомендуется использовать следующее мнемоническое правило:
Производная
вероятности пребывания системы в
состоянииn
равна алгебраической сумме нескольких
членов:
- число членов этой суммы равно числу стрелок на графе состояний системы, соединяющих состояние n с другими состояниями;
- если стрелка направлена в состояние n, то член берётся со знаком плюс;
- если стрелка направлена из состояния n, то со знаком минус;
- каждое слагаемое суммы равно произведению вероятности того состояния, из которого направлена стрелка, на интенсивность потока событий, переводящего систему по данной стрелке.
В соответствии с размеченным графом состояний, используя мнемоническое правило, систему обыкновенных дифференциальных уравнений вероятностей состояний запишем так:
(так
называемые уравнения Эрланга)
Исследование математической модели
Ограничимся исследованием установившегося режима работы разомкнутой одноканальной системы.
Тогда
.
Вместо системы обыкновенных дифференциальных уравнений получаем систему алгебраических уравнений:

Используя полученную систему алгебраических уравнений, легко выразить вероятности состояний системы в виде некоторой рекуррентной формулы.
Из первого уравнения определяется вероятность наличия одного требования в системе
![]()
из второго уравнения – вероятность наличия двух требований в системе
.
Окончательно
получим
.
Аналогично
проводятся преобразования для определения
:

Окончательно
получим
и т.д.
Суммируя формулу суммы членов убывающей геометрической прогрессии, получаем
.
При
отсюда имеем:
вероятность
простоя канала обслуживания
;
вероятность
того, что в системе находится
требований![]()
среднее число требований, находящихся в системе (или математическое ожидание):

Последняя скобка является производной от следующего выражения:
,
т.е.
равна
.
Окончательно
имеем
![]()
- среднее число требований, находящихся в очереди:
;
- среднее время ожидания требования в системе, которое можно определить, зная среднее число требований, находящихся в системе:
.
