Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

STROITEL_NOE_MATERIALOVEDENIE_RYB_EV

.pdf
Скачиваний:
91
Добавлен:
01.05.2015
Размер:
7.29 Mб
Скачать

Наибольшая ширина контактной зоны (60—80 мкм) имеется при применении граншлака и аглопорита, наименьшая (10—15 мкм) — при использовании известняка. Но во всех случаях, вследствие специфических свойств шлакощелочных цементов и структурообразования в присутствии щелочи, эта зона составляет прочную оболочку низкоосновных гидросиликатов и гидроалюмосиликатов вокруг зерен заполнителя, повышает сопротивляемость бетона внешним механическим и химическим воздействиям, а также поддерживает однородность напряжений и деформаций в структурных элементах конгло мерата, предохраняет недостаточно стойкие заполнители от влагообменных процессов. В связи с этим улучшаются физико-механические свойства и долговечность шлакощелочных цементного камня и бетона.

Повышению прочности бетона благоприятствует: применение более крупного заполнителя (фракции 5—10 мм) при меньшем расходе шлака и щелочного компонента, т. е. цементного камня, как непрерывной пространственной сетки матричного вещества; минимальной пустотности смеси заполнителей в уплотненном состоянии; оптимальной плотности раствора щелочного компонента (например, метасиликата натрия, кальцинированной соды и др.). Увеличению сроков схватывания шлакощелочного цемента, а следовательно, продолжительности выдержки бетонной смеси на его основе до формования способствует совместный помол шлака с кремнийорга-ническими и другими ПАВ.

Скорость нарастания прочности шлакощелочных бетонов после их формования зависит от плотности раствора и вида щелочного компонента. Так, например, мелкозернистые бетоны с применением раствора метасиликата натрия плотностью 1300 кг/м3 относятся к быстротвердеющим, если использовать менее плотные растворы, скорость роста прочности значительно замедляется. Она становится совсем малой у бетонов, в которых шлакощелочное вяжущее вещество формируется на основе кислого молотого шлака и раствора соды Na2CO3, что отражает важную роль состава вяжущего вещества. Но на скорость роста прочности и, следовательно, структурообразования влияют также и заполнители. Так, например, при применении заполнителей из гранита и песчаника продолжительность периода, в который наблюдается незначительный прирост прочности бетона, весьма мала (менее 3 ч), тогда как скорость нарастания прочности бетона наибольшая. При использовании заполнителей из глинистых сланцев и аргиллитов наблюдается существенное (12 ч и более) увеличение продолжительности периода незначительного прироста прочности, тогда как темп нарастания прочности ниже, чем у бетонов с заполнителем из глинистых сланцев. В этих явлениях вновь проявляется роль поверхности заполнителя и новообразований контактной зоны. Естественно, что свое влияние на эти процессы оказывают тепловые режимы, принимаемые при обработке твердеющих бетонов. Однако следует отметить, что мелкозернистые шлакощелочные бетоны твердеют в воде, при пропаривании и в естественных условиях (воздушно-сухих и влажных). При автоклавной обработке достигается более высокий эффект повышения их прочности.

Эта разновидность бетонов обладает комплексом и других полезных свойств: малым тепловыделением при твердении, высокой биостойкостью, абразивной устойчивостью и износостойкостью, повышенной жаростойкостью и др. В исследованиях контактной зоны отмечается максимум микротвердости, повышенное содержание водонерастворимых новообразований, а структура контактного слоя приближена к оптимальной.

Шлакощелочные бетоны имеют реальную перспективу широкого применения в строительстве вследствие не только своего высокого качества и пониженной стоимости, но и благодаря обширной сырьевой базе шлаков и щелочного компонента. Шлаки гранулированные могут быть доменными, электротермофосфорными и других металлургических производств. Для получения щелочного компонента соединений щелочных металлов могут использоваться технические продукты: сода кальцинированная синтетическая, поташ, фтористый натрий; растворимые щелочные

441

силикаты (жидкие стекла с силикатным модулем от 1 до 2,5); природная сода; побочные продукты производства; капррлактам с получением побочного продукта в виде поплава соды кальцинированной; клинкерообжигательных печей с выдачей пыли электрофильтров, в которой обычно содержится свыше 10% карбонатов натрия и калия; содового с выдачей побочного продукта в виде плавленой смеси щелочей (NaOH + КОН); двуокиси титана и глинозема с выдачей побочного продукта метасиликата натрия и др. Расчеты технико-экономической эффективности шлакощелочных цементов и конгломератов на их основе, проводившиеся различными учеными и специалистами- практиками, показали безусловную перспективность интенсивного применения их в строительстве, в первую очередь сельскохозяйственном, дорожном, гидромелиоративном и др. Вместе с тем при решении проблемы массового применения этой разновидности минеральных вяжущих веществ смешанного типа предстоит дальнейшее совершенствование их свойств, в частности, полное предотвращение высолообразований на поверхности бетонов, улучшение деформативных характеристик бетона и др.

442

12.2. МАТЕРИАЛЫ И ИЗДЕЛИЯ НА ОСНОВЕ КОМПАУНДИРОВАННЫХ И КОМБИНИРОВАННЫХ ВЯЖУЩИХ ВЕЩЕСТВ

Компаундированные вяжущие вещества (компаунды), получаемые сплавлением или смешением органических вяжущих веществ различных видов и марок, используют в основном для производства кровельных, гидроизоляционных и герметизирующих материалов и изделий. Но они могут применяться также и для бетонов типа асфальтовых или полимерных, полимерцементных.

Герметик получают на основе двух синтетических каучуков этиленпропилен-каучука (СКЭП) и бутилкаучука БК с молекулярной массой выше 20 000. Оба синтетических каучука смешивались на вальцах при температуре 60—80°С в течение 10 мин до однородного состояния; затем в массу в качестве мягчителя добавляли минеральное масло ИС-30 и наполнитель сепарированный мел. Затем масса подвергалась окончательному перемешиванию в течение 30 мин при той же температуре. Каждый компонент, вошедший в состав герметика, выполняет наиболее характерные для него функции: этиленпропиленовый каучук формирует подвижную пространственную сетку мастики; бутилкаучук увеличивает клейкость этогр каучука; мягчитель снижает вязкость системы, что особенно важно при внесении герметика в шов; наполнитель упрочняет систему, спо- собствует быстрому нарастанию теплостойкости мастики. Эти компоненты имеют и другие функции, но указанные в основном обусловливают качество нетвердеющего герметика.

Существенно улучшает качество асфальтовых бетонов использование компаундированного битума с добавлением в него резино-каучуковых веществ. У асфальтобетонов повышаются упруго-эластические и теплостойкие свойства, морозе- и температуростойкость. За рубежом и в нашей стране накопился достаточный опыт добавления каучука и резины в битумы. Наиболее эффективное воздействие на битумы оказывает натуральный каучук и синтетический gR-S марки П. По данным автора, резина (протекторная крошка) резко повышает эластичность битумов, например уфимского: при введении в него резины в количестве 20% кратковременная эластичность возросла почти в 3 раза, а у дрогобычского в 6 раз по сравнению с исходным битумом. Соответственно у асфальтового вяжущего вещества на 75% и в 4—-5 раз, а с люберецким битумом в 15—20 раз. По абсолютной величине кратковременная эластичность оставалась наиболее высокой у асфальтовяжущего вещества с уфимским битумом. Рациональное количество резинового порошка, добавляемого в битум и асфальтобетон при заданной температуре, устанавливается экспериментальным путем по оптимальной величине Б/П.

Другим возможным способом обогащения битума каучуковым веществом является впрыскивание каучукового латекса в битум в процессе его горячего потока (200—210°С), чтобы обеспечивалось сравнительно мгновенное и полное испарение воды из латекса, но исключалась возможность деполимеризации каучука. Получаемый новый компаундированный материал, именуемый как гуммированный битум, обладает повышенной эластичностью, увеличивающейся при одновременном добавлении в него серы или серосодержащих органических соединений. За рубежом используется накопленный опыт по компаундированию битума полимерами эпоксидной смолой, полиэфирной смолой. Получаемый ИСК именуется нередко как «эпон-асфальт». Он отличается высокой прочностью при растяжении и сжатии, высокой сопротивляемостью органическим (нефтяным) растворителям и щелочам, а в эксплуатационный период высокой теплостойкостью и долговечностью.

Компаундированными вяжущими с применением в них кумаро-новой смолы, глифталевых и идиоловых полимеров, а в зарубежной практике светлых синтетических битумов, а также полимеров, пользуются при изготовлении цветных асфальтовых бетонов для устройства парковых дорожек, оформления городских площадей и скверов, пешеходных переходов и других объектов.

443

Материалы на основе комбинированных вяжущих веществ. Комбинированные вяжущие вещества позволяют изготовлять высококачественные материалы с конгломератным типом структуры. Среди них более часто встречаются комбинации на основе неорганических и органических соединений. В первую очередь это относится к полимерцементным бетонам, бетонополимерам и цементно-полимерным бетонам.

Полимерцементные бетоны получают на основе традиционных минеральных вяжущих веществ портландцемента, глиноземистого цемента, извести, гипса, жидкого стекла и др. С принятым неорганическим веществом объединяется мономер или полимер (пропи- ловый спирт, пропилен, пропил амин и др.), находящийся в виде водного раствора. После отверждения образуется своеобразный по-лимерцементный (или иного названия) камень, как матричная часть ИСК. Количество вводимого мономера (или полимера) составляет А—10% или более по массе в пересчете на сухое вещество. В результате прочность бетона (или другого материала) заметно увеличивается при испытаниях на растяжение, изгиб и ударную нагрузку, повышается химическая стойкость ИСК и адгезионная способность вяжущего компонента. Возрастает морозостойкость и водонепроницаемость. Вместе с тем, снижается скорость микроструктурообразо-вания, возможен рост усадочных явлений. Так, например, отмечено, что гидролиз и гидратация алита и С3А в водных растворах мономеров или полимеров замедляется. Наблюдается тенденция к увеличению основности гидроалюмината кальция при росте концентрации С3АН6. Также используются водорастворимые полимеры эпоксидные смолы С-89, карбамидные смолы, поливиниловый спирт, метилцеллюлоза и др.

Для получения полимерцементного бетона возможно вместо водного раствора полимера (мономера) вводить водную дисперсию полимера, например поливинилацетатной дисперсии, бутадиен-стирольного латекса или латексные дисперсии. Можно также использовать нерастворимые в воде полимеры, например эпоксидные, полиэфирные, полиуретановые и другие олигомеры, способные с помощью соответствующих эмульгаторов образовывать достаточно устойчивую эмульсию при интенсивном перемешивании с минеральным вяжущим веществом.

Бетонополимеры получают путем обычной технологии цементного бетона, однако на завершающей стадии твердения бетонного изделия производится его вакуумная сушка и последующая пропитка мономером. Среди употребляемых мономеров метилметакрилат, стирол, низкомолекулярные эпоксидные смолы, ФАМ и др. Они заполимеризовываются в порах цементного камня и бетона под влиянием кислорода воздуха, повышенных температур, отвердите-лей и др. Пропитка полная или только верхнего слоя на глубину 10—20 мм изделия снижает сквозную пористость, повышает прочность исходного цементного бетона. Его предельная прочность при сжатии может составить до 120—300 МПа: Возрастает в 3—4 раза сопротивление истиранию. Резко снижается ползучесть с возрастанием модуля упругости. Повышается морозостойкость, увеличиваясь с 200 до 500 циклов, водонепроницаемость, химическая стойкость. Но введение мономера удорожает бетон, поэтому его используют в ответственных конструкциях, при производстве тюбингов и др.

Порошкообразный водонерастворимый полимер или мономер может быть внесен в бетон как обычный наполнитель на стадии производства бетонной смеси. Для придания дисперсной системе повышенной гидрофильности в нее вводят ПАВ.

Из неорганических веществ для пропитки бетона применяют жидкое стекло и серу. Состав серных бетонов: сера 58—70%, минеральный наполнитель 30—40%, пластификатор 1—4%. При температуре 180—200°С и последующем быстром охлаждении образуется полимерная сера: в макромолекуле находятся многие десятки тысяч атомов серы.

Цементно-полимерный бетон получают так же, как и полимерце-ментные. Однако количество вводимых полимеров ограничивается 1—3% по массе или даже меньше (в

444

пересчете на сухое вещество). Присутствие полимера в бетоне даже в таких малых количествах приносит техническую пользу.

Фибробетон разновидность цементного бетона, в котором достаточно равномерно распределены обрезки — «фибры». Под этим собирательным названием подразумеваются волокна из металла, отрезки тонкой стальной проволоки, отходы гвоздевого производства

идр., а также из щелочестойкого стекловолокна, полимеров (главным образом полипропилена) и т. п. Фибра в бетоне выполняет функции армирующего компонента, что способствует улучшению качества бетона (фибробетона), повышает его трещиностойкость и деформативность. Вследствие того, что фибра вносится в процессе перемешивания, распределение волокон становится неорганизованным, хотя вибрационное воздействие на бетонную смесь при уплотнении благоприятствует направленному размещению отдельных волокон. При параллельной ориентации их к действию растягивающих усилий на изделие из фибробетона прочность последнего зна- чительно (в 2—3 раза) возрастает по сравнению с хаотическим (объемно-произвольном) армированием, когда меньшая часть волокон участвует в восприятии усилий от нагрузок. К фибре предъявляются определенные технические требования, например в отношении ее химической стойкости к щелочной среде бетона длины волоконец по сравнению с их диаметром (не менее 10:1). По зарубежным данным, оптимальным является отношение l/d = 100 – 150. Требования также касаются показателя прочности на растяжение, модуля упругости, адгезии к бетону, коэффициента линейного расширения и др. Концентрация фибры в объеме бетона устанавливается на стадии проектирования оптимального состава

изависит, в частности, от ее комкуемости при перемешивании бетонной смеси. Рациональное содержание армирующих волоконец в бетоне уменьшается по мере увеличения количества крупного заполнителя, особенно после 30—35% его по массе. Предельное насыщение матрицы стальными волокнами при обычном способе переме- шивания составляет 2—3%, стеклянной 3—5%.

При упрочнении матрицы оптимальной структуры фиброй упрочняется и ИСК, что соответствует закону конгруэнции.

Исследования показывают, что при использовании нейлона, полиэтилена, полипропилена

идругих армирующих волокон с низким модулем упругости увеличивается их относительная растяжимость, а у фибробетонов и других ИСК повышаются ударная вязкость, сопротивляемость истиранию и выкалыванию линз, каверн и т. п. Применение волокон из стали, щелочестойкого стекла, асбеста и других волокон с высоким модулем упругости (по сравнению с матрицей) увеличивает прочность бетона (ИСК) при растяжении и даже сопротивляемость динамическим воздействиям. Более целесообразно

комбинирование армирующих волокон.

Эффективным является введение фибры, подвергшейся поверхностной обработке полимерными веществами или их компаундами. Максимальные прочностные показатели (например, при сжатии до 40 МПа и более) достигаются при 3%-ном содержании фибры (по объему) и длине фибры 40—45 мм.

В технологии фибробетона наиболее трудной операцией является перемешивание бетонной смеси с фиброй. В основном пока используют обычные типы мешалок барабанные, растворные с принудительным лопастным перемешиванием. Однако дальнейший успех эффективного фибробетона связан с совершенствованием технологии и разработкой специальной техники, способной обеспечить высокое качество перемешивания разнородных компонентов при любых необходимых количествах волокон в бетонной (растворной) мйссс.

Фибробетоны применяют в сборных и монолитных конструкциях, работающих на знакопеременные усилия. В нашей стране эта югрессивная разновидность бетона не получила массового распространения, хотя используется на некоторых строительных объектах, например при возведении станций Московского и Санкт-Петербургского метрополитена для заполнения зазоров в металлических и железобетонных конструкциях,

445

на МКАД с использованием в их конструкциях стеклофибробетона. В других случаях, например на третьем транспортном кольце Москвы, стеклофибробетон используют в качестве несъемной опалубки-облицовки в тоннелях путепровода.

446

Глава 13 Теплоизоляционные материалы и изделия

13.1. ОБЩИЕ СВЕДЕНИЯ

Теплоизоляционными называют строительные материалы, которые обладают малой теплопроводностью и предназначены для тепловой изоляции строительных конструкций жилых, производственных и сельскохозяйственных зданий, поверхностей производст- венного оборудования и агрегатов (промышленных печей, турбин, трубопроводов, камер холодильников и пр.). Эти материалы имеют небольшую среднюю плотность не выше 600 кг/м3, что достигается повышением пористости.

В строительстве тепловая изоляция позволяет уменьшить толщину ограждающих конструкций (стен, кровли), снизить расход основных материалов (кирпича, бетона, древесины), облегчить конструкции и понизить их стоимость, уменьшить расход топлива в эксплуатационный период. В технологическом и энергетическом оборудовании тепловая изоляция снижает потери теплоты, обеспечивает необходимый температурный режим, снижает удельный расход топлива на единицу продукции, оздоровляет условия труда. Чтобы получить достаточный эффект от применения тепловой изоляции, в инженерных проектах производятся соответствующие тепловые расчеты, в которых принимаются конкретные разновидности теплоизоляционных материалов и учитываются их теплофизические характеристики. Эти мероприятия позволяют успешно решать проблему экономии топливно-энергетических ресурсов.

По основной теплофизической характеристике теплопроводности теплоизоляционные материалы делят на три класса: А малотеплопроводные, Б среднетеплопроводные и В повышенной теплопроводности. Классы отличаются величиной теплопроводности материала, а именно: при средней температуре 25°С мате- риалы класса А имеют теплопроводность до 0,06 Вт/(м·К), класса Б от 0,06 до 0,115 Вт/(м·К), класса В от 0,115 до 0,175 Вт/(м·К). При других средних температурах измерения теплопроводность материала возрастает согласно следующей зависимости: λt=λ0/(1+βt), где λt теплопроводность при температуре t°C; λ0 теплопроводность при температуре С; β температурный коэффициент, выражающий приращение теплопроводности материала при повышении его температуры на С и равный 0,0025 (до 100°С по данным О.Е. Власова).

Наблюдаются исключения из этой зависимости, когда с повышением температуры материала теплопроводность его не повышается, а снижается, например у магнезитовых огнеупоров, металлов.

Самым характерным признаком теплоизоляционных материалов является их высокая пористость, поскольку воздух в порах имеет меньшую теплопроводность, чем окружающее его вещество в конденсированном состоянии (твердом или жидком). При величине пор 0,1—2,0 мм воздух имеет в них теплопроводность, равную 0,023—0,030 Вт/(м·К). Пористость теплоизоляционных материалов может составлять до 90 и даже до 98%, а супертонкое стекловолокно имеет пористость до 99,5%. Между тем такие конструкционные материалы, как тяжелый цементный бетон, имеет пористость до 9— 15%, гранит, мрамор 0,2—0,8%, керамический кирпич -25—35%, сталь — 0, древесина

до 70% и т. п. Поскольку пористость непосредственно влияет на величину средней плотности, теплоизоляционные материалы обычно различают не по пористости, а по средней плотности. Их делят на три группы: особо легкие ОЛ (и наиболее пористые), имеющие марку по средней плотности (в кг/м3) в сухом состоянии 15, 25, 35, 50, 75 и 100;

легкие (Л) — 125, 150, 175, 200, 225, 300 и 350 и тяжелые (Т) — 400, 450, 500 и 600.

Материалы, имеющие среднюю плотность между указанными марками, относят к ближайшей большей марке. При средней плотности 500—700 кг/м3 материалы используют с учетом их несущей способности в конструкциях, т. е. как конструкционно- теплоизоляционные. В целом же следует отметить, что ориентация на низкую

447

теплопроводность воздуха в порах хотя и обоснована, но не исключает поиска менее теп- лопроводных среднеинертных газов, вакуума и других условий работы материалов. Теплопроводность резко возрастает при увлажнении теплоизоляционных материалов, так как теплопроводность воды равна 0,58 Вт/(м·К), т. е. примерно в 25 раз выше, чем у воздуха. При замерзании увлажненного теплоизоляционного материала происходит дальнейшее увеличение его теплопроводности, поскольку теплопроводность льда составляет 2,32 Вт/(м·К), т. е. в 100 раз больше, чем воздуха в тонких порах. Очевидно, что весьма важно предохранять теплозащитный слой в конструкциях и на оборудовании от увлажнения, тем более при возможном последующем замерзании влаги. Важным свойством утеплителя является морозостойкость при защите наружных ограждающих конструкций. Кроме различия теплоизоляционных материалов по теплопроводности и средней плотности они подразделяются также:

по виду исходного сырья на неорганические и органические. К неорганическим относятся минеральная и стеклянная вата (и изделия из них), вспученный перлит и вермикулит (изделия из них), ячеистые бетоны, керамические теплоизоляционные изделия и др.; к органическим древесноволокнистые и древесностружечные плиты, камышит, теплоизоляционные пластмассы и др.; по форме материалов различают штучные (плиты, блоки, кирпич, цилиндры, сегменты),

рулонные (маты, полосы, картон, матрацы), шнуровые (шнуры, жгуты) и сыпучие материалы (минераловат-ная смесь, вспученный перлит и др.); по способности к сжимаемости под нагрузкой (относительной деформации сжатия)

теплоизоляционные материалы делят на три вида: мягкие (М), имеющие сжимаемость свыше 30% под удельной нагрузкой 2·103 Па, полужесткие (ПЖ) — соответственно — 6— 30%, жесткие (Ж) — до 6%, повышенной жесткости до 10% под удельной нагрузкой 4·103 Па и твердые до 10% под удельной нагрузкой 10 кПа.

Теплоизоляционные материалы, применяемые в холодильных камерах, холодильниках, рефрижераторах, а также во влажных условиях, должны иметь повышенные био- и водостойкость. К этим важным материалам предъявляются и некоторые другие техниче- ские требования стабильность физико-механических и теплотехнических свойств, предельно допустимое количество выделяемых токсических веществ, требования в отношении возгораемости, экономичности. Теплоизоляция должна выдерживать действие высокой температуры и открытого пламени в течение определенного времени. Важно определить предельную температуру применения материала, а также строго придерживаться ее при назначении теплоизоляционных изделий: керамических до 1200—1300°С, трепельного кирпича до 900°С, из ячеистого бетона и пеностекла до

400°С, органических — 75—100°С.

Структура теплоизоляционных материалов характеризуется наличием твердой и газообразной фаз; нередко присутствует и жидкая фаза, например вода в свободном состоянии. Эти газообразная и конденсированные фазы участвуют в передаче теплоты; кроме того теплота передается через границы пор с твердым веществом.

Теплопередача пор складывается из теплопроводности газа в порах, конвективной передачи теплоты и теплоизлучения газа. Как отмечалось выше, теплопроводность воздуха при атмосферном давлении составляет при температуре 25°С около 0,025, при температуре 100°С — 0,031 и при температуре 1000°С — 0,079 Вт/(м·К). Такие же примерно значения теплопроводности имеют азот, кислород, а водород 0,20 Вт/(м·К). Эти значения теплопроводности учитывают при работе теплоизоляционного материала в соответствующей газовой среде.

Второе слагаемое общей теплопередачи пор конвекция, в порах размером меньше 5 мм она практически отсутствует и поэтому не учитывается. Но при большей величине пор или их непрерывности конвекция становится больше.

Третье аддитивное слагаемое теплопередачи теплоизлучение зависит от черноты стенок пор, формы и размера пор, температуры. Величина излучения имеет большое

448

значение при передаче теплоты в порах, особенно при высоких температурах, так как она пропорциональна кубу температуры. В результате может оказаться, что теплопередача при высокой температуре высокопористых изделий будет выше, чем менее пористых.

Твердая фаза имеет большую теплопроводность и поэтому, когда она является в структуре непрерывной, теплопроводность материала оказывается в 2 — 2,5 раза выше, чем при непрерывности пор. В волокнистых теплоизоляционных материалах непрерывными в структуре являются как твердые фазы, так и поры, поэтому их теплопроводность весьма значительно зависит от лучистой составляющей теплопроводности.

С учетом физических факторов, влияющих на общую или эффективную теплопроводность в гетерогенных пористых телах, на практике и в теории были предложены основные способы получения теплоизоляционных материалов: пористо-волокнистых (минеральной и стеклянной ваты, древесноволокнистых материалов с применением асбеста и др.), пористо-зернистых (перлитовых, вермикулитовых, известково-кремнеземистых и др.); ячеистых (газобетонов, пенобетонов, пеностекла, пенопластов и др.). Различие между ними не только в составе и структуре конечного продукта, но и в технологическом способе поризации.

449

13.2.СПОСОБЫ ПОРИЗАЦИИ МАТЕРИАЛОВ

Кглавнейшим искусственным способам поризации материалов с приданием им теплозащитных свойств относятся следующие.

Способ газообразования основан на введении в сырьевую смесь компонентов, которые способны вызвать химические реакции с выделением в больших количествах газовой фазы. Газы, стремясь выйти из твердеющей пластической массы, образуют пористую структуру материала газобетона, газосиликата, газокерамики, ячеистого стекла, газонаполненной пластмассы и др.

В качестве химических газообразователей используются алюминиевая пудра и техническая перекись водорода (пергидроль). Алюминиевая пудра в результате реакции с гидроксидом кальция способствует выделению большого количества молекулярного водорода (см. 9.4.4). Пергидроль легко разлагается в щелочной среде с образованием молекулярного кислорода (см. 9.4.4). В обоих случаях вспучивается цементное тесто. Аналогично в расплавленные стекла и смолы вводятся реагенты, способствующие

образованию газов СО2, N2 и др.

Способ пенообразования основан на введении в воду затворения вяжущих пенообразующих веществ. Стабилизированные пузырьки пены представляют собой воздушные поры пенобетона, пеносиликата, пенокерамики и др. В качестве стабилизаторов пены для повышения ее стойкости до момента отвердевания вяжущего используются столярный клей, сернокислый глинозем, смолы и др. Пенообразователями служат соли жирных кислот натриевые и калиевые мыла, мыльный корень и извлекаемый из него сапонин; клееканифольный пенообразователь, получаемый из

канифольного мыла (соль абиетиновой кислоты С19Н39СООН); алюмосульфонафтеновый пенообразователь, получаемый из керосинового контакта и сернокислого глинозема; гидролизованная кровь (ГК), получаемая путем обработки отходов мясокомбинатов по схеме техническая кровь + едкий натр + железный купорос + хлористый аммоний.

Способ повышенного водозатворения состоит в применении большого количества воды при приготовлении формовочных масс (например, из трепела, диатомита) и последующего ее испарения с сохранением пор при высушивании. Этот способ применяют в производстве древесноволокнистых плит, торфяных, асбесто-трепельных и других материалов.

Способ вспучивания заключается в нагревании до высоких температур некоторых горных пород и шлаков. Из сырья выделяются газы или водяные пары главным образом в связи с отделением химически связанной или цеолитной воды. При способе вспучивания сырьем служат перлит и обсидиан, вермикулит, некоторые разновидности глин, в особенности содержащие легкоплавкую закись железа (FеО). Эти и некоторые другие сырьевые материалы после вспучивания образуют соответствующие высокопористые тепло- изоляционные материалы вспученные перлит и вермикулит, керамзит, шлаковую пемзу и др. Так, например, при быстром нагревании вермикулит (высокогидратированный алюмосиликат магния см. гл. 8) расщепляется на отдельные слюдяные пластинки, которых в 1 см3 насчитывается до 200 тыс. шт. (рис. 13.1). При этом зерна вермикулита сильно вспучиваются вследствие обильного выделения из минерала при нагревании химически связанной воды. Раздвигая пластинки, поры увеличивают объем зерен в 20—30 раз и более. Вспученный вермикулит характеризуется малой насыпной плотностью (80— 150 кг/м3), низкой теплопроводностью λ = 0,09—0,12 Вт/(м·К). Обжиг производится во вращающихся и шахтных печах при быстром подъеме температуры до 800—1000°С и последующем охлаждении. Аналогичное увеличение объема при вспучивании происходит и при быстром нагревании в печах перлита (высококремнеземистой породы см. гл. 8). Насыпная плотность вспученного перлитового щебня составляет 160—500 кг/м3. Пористость вспученного перлита может достигать 88—90% и более.

450

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]