Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

STROITEL_NOE_MATERIALOVEDENIE_RYB_EV

.pdf
Скачиваний:
88
Добавлен:
01.05.2015
Размер:
7.29 Mб
Скачать

Карбамидные (мочевцноформалъдвгидные) полимеры продукты реакции поликонденсации мочевины и ее производных (тиомочевины, меламина) с формальдегидом.

Мочевина карбамид [СО—(NH2)2] в чистом виде представляет собой кристаллы без цвета и запаха, хорошо растворимые в воде и хлороформе; получают нагреванием под давлением смеси аммиака и углекислого газа.

Врезультате взаимодействия мочевины с формальдегидом в процессе поликонденсации могут быть получены термопластичные и термореактивные полимеры. По сравнению с фенолоформальдегидными полимерами стоимость их ниже. Они светостойки, но вместе с тем менее водостойки, имеют пониженную химическую стойкость и большую хрупкость. Мочевиноформальдегидные полимеры применяют для изготовления отделочных материалов слоистых пластиков, а также древесностружечных плит и пенопластов. Изделия на основе этих полимеров отличаются светлым тоном и хорошо окрашиваются в любой цвет.

Меламиноформалъдегидные полимеры продукты поликонденсации меламина и формальдегида. Меламин кристаллическое вещество, растворимое в воде, амид циануровой кислоты.

Процесс конденсации этих полимеров сходен с процессом конденсации мочевины с формальдегидом. Однако меламиноформальдегидные полимеры вследствие большего числа связей сшивок») обладают повышенной прочностью, твердостью и теплостойко- стью.

Обычные продукты конденсации меламина и формальдегида имеют ограниченное применение в строительстве и вследствие растворимости в воде используются в виде водных растворов.

Полиуретан продукт взаимодействия диизоцианатов и многоатомных спиртов, т. е. веществ, в молекулы которых входят две изоцианатные группы (O=C=N) и две или более гидроксильные группы.

Полиуретаны чаще всего бывают линейными микрокристаллическими высокополимерами. Однако при применении веществ с полиреактивностью более двух (трехатомных спиртов или триизоциа-натов) могут быть получены и термореактивные разновидности.

Полиуретаны применяют для изготовления волокон, лакокрасочных покрытий, гидроизоляционных пленок и клеев. Большое значение приобретает этот полимер для производства газонаполненных пластмасс малой плотности (до 30 кг/м3), обладающих хорошими тепло- и звукоизоляционными свойствами.

Полиэфирные полимеры высокомолекулярные соединения, получаемые в результате поликонденсации многоосновных кислот со спиртами. Широкое применение получили главным образом глиф-талевые полимеры, синтезируемые путем взаимодействия глицерина с ангидритом фталевой кислоты. Глицерин простейший трехатомный спирт

С3Н5(ОН)3 и фталевый ангидрит (С6H4СО)2·О в результате реакции поликонденсации образуют глифталевый полимер с трехмерными сетчатыми молекулами.

Впромышленности строительных материалов глифталевые полимеры используют при изготовлении лаков, эмалей и грунтовок для внутренней отделки помещений. Полиэфиры, полученные конденсацией малеинового ангидрида и этиленгликолей, называют полиэфирмалеинатами. Полиэфирма-леинатные полимеры выпускают марок ПН-1, ПН-2 и др.

Полиэфиры вследствие относительной дешевизны, а также развитой сырьевой базы для их получения имеют широкое применение в качестве прочных и теплостойких лакокрасочных покрытий.

Эпоксидные полимеры (полиэпоксиды) — продукты поликонденсации двух органических низкомолекулярных соединений, из которых одно должно содержать эпоксигруппу

401

= C C = , а другое иметь подвижный атом водорода (фенолы, спирты и др.). Одной из

\ /

O

типичных разновидностей этих полимеров является полиэпокеид, получаемый конденсацией эпихлоргидрина и диоксидифенолпропана. Эпоксидные полимеры могут быть получены как в твердом, так и в жидком состоянии. Для отверждения эпоксидных полимеров (смол) используют два вида отвердителей каталитического и «сшивающего» действий. К отвердителям каталитического действия относят диметиламинометилфенол, фтористый бор и др., к отвердителям второго вида полиамины, полисульфиды и др. При отверждений эпоксидных полимеров не выделяются побочные продукты реакции, что способствует изготовлению изделий на этих полимерах.

Эпоксидные полимеры .обладают исключительно высокой адгезией почти ко всем материалам, в том числе к металлам, бетону, древесине, стекловолокну, хлопчатобумажным тканям. Они хорошо совмещаются со многими полимерами и после отверждения характеризуются высокой химической стойкостью, а также относительно высокой теплостойкостью до 140—150°С.

Промышленность выпускает следующие марки эпоксидных полимеров: ЭД-8, ЭД-10, ЭД- 14, ЭД-20 и др.

При добавлении к эпоксидным полимерам некоторых наполнителей и пластификаторов получают хорошо цементирующий материал для герметизации стыков и ремонта труб. Полиамидные полимеры продукты реакции поликонденсации двухосновных кислот и диаминов. По своему строению и способу получения они сходны с полиэфирами. Полиамидные полимеры представляют собой твердые, высокоплавкие вещества с микрокристаллической структурой и термореактивными свойствами. В строительстве они нашли применение для изготовления влагоизолирую-щих пленок, используемых при производстве бетонных работ.

Кремнийорганические полимеры (полиорганосилоксаны) — высокомолекулярные соединения, главные цепи макромолекул которых состоят из чередующихся атомов кремния и кислорода (кремнеземистый остов молекулы), а углерод входит в состав групп,.обрамляющих главную цепь (R радикал типа СН3):

CH3

CH3

|

|

− Si − O −

Si − O −

|

|

CH3 CH3

Эти полимеры, получаемые из низкомолекулярных соединений ал-килхлорсиланов и др., отличаются повышенными жесткостью и теплостойкостью. В этом смысле они как бы обладают свойствами, присущими как силикатным материалам (прочность, твердость, теплостойкость), так и органическим полимерам (эластичность, гидро-фобность, морозостойкость). Кремнийорганические полимеры в зависимости от строения исходных мономеров могут иметь линейное и пространственное строение молекул. Низкомолекулярные разновидности кремнийорганических полимеров в виде жидкостей ГКЖ-10, ГКЖ-11, ГКЖ-94 применяют для приготовления водоотталкивающих красок и придания бетонам и растворам гидрофобных свойств. Высокомолекулярные кремнийорганические полимеры используют: линейные в герметиках, так как являются каучуками; химически «сшитые» — в пластиках для склеивания волокон и в жароупорных эмалях и лаках.

Основные физико-механические свойства поликонденсационных полимеров приведены в табл. 11.2.

Таблица 11.2. Физико-механические свойства поликонденсатов

Наименование полимеров Плотность, Теплостой- Предел прочности, Ударная

402

 

г/см3

кость по

МПа

 

вязкость,

 

 

Мартенсу,

при

при

Дж/м2

 

 

°С

растяжении

сжатии

 

Фенолоформальдегидные

1,28

80—110

25—50

70—150

2—6

(резольные)

 

 

 

80—110

 

Мочевиноформальдегидныс

1,45

70—100

12—50

0,6—0,7

Эпоксидные

1,2

60—140

40—80

70—160

10—25

Кремнийорганические

1,8

250—350

400—

600

 

 

 

 

 

403

11.2. НАПОЛНИТЕЛИ, ЗАПОЛНИТЕЛИ И ДОБАВОЧНЫЕ ВЕЩЕСТВА В ИСК

Наполнители в полимерных конгломератах и пластмассах имеют более широкое понятие, чем в других ИСК. К данной группе материалов относят не только порошкообразные вещества, частицы которых, как отмечалось ранее, соизмеримы с частицами связующего или вяжущего вещества, но и имеют макрочастицы, которые ранее относились к заполнителям. И только в полимербетонах как основной разновидности ИСК на основе органического полимера компонентами могут служить пески и более крупные частицы в виде щебня и гравия, которые также нередко называют заполнителями. Кроме порошкообразных, наполнителями полимерных конгломератов, особенно типа пластмасс, могут быть волокнистые и листовые вещества.

Все наполнители способствуют в той или иной мере увеличению механической прочности, тепло- и огнестойкости, электро- и теплопроводности конгломератов и пластмасс. Они уменьшают расход дорогостоящего полимера и тем самым снижают себестоимость готовой продукции.

Наполнители и заполнители могут быть природными и искусственными. К последним можно условно отнести и побочные продукты (чаще именуемые как отходы) производства. По вещественному составу те и другие могут быть минеральными и органическими. Из природных минеральных наполнителей (заполнителей) применяют кварцевые пески. Особенно часто используют пылевидный кварцевый песок с частицами мельче 0,063 мм, а также порошкообразный кварц маршалит. Из карбонатных пород распространенным наполнителем является порошок мела, частицы которого мельче 0,16 мм. Широко применяют тальк, поставляемый двух марок (А и Б), что зависит от его белизны. Среди других природных минеральных наполнителей асбест, гипс, барит, доломит, каолин, магнезит, слюда молотая, белая сажа, графит и др. К искусственным минеральным наполнителям относятся портландцемент, шлакопор-тландцемент и т. п. Повышенной активностью обладает тонкоизмельченный алюминий, известный как алюминиевая пудра. В зависимости от кроющей способности ее разделяют на четыре марки от ПАК-1 до ПАК-4. К искусственным относятся также порошки чугунные, стальные, никелевые, а также стеклянная мука, рубленое стекловолокно, фарфоровая мука и др. Из органических наполнителей используют древесную муку, пробковую муку.

Волокнистыми наполнителями являются асбестовое волокно, древесное волокно, стекловолокно (главным образом, алюмоборо-силикатное), каменное (например, базальтовое) волокно, синтетическое (нейлон, вискоза и др.) волокно, хлопковые очесы, целлюлоз-а.

К листовым наполнителям относятся бумага, ткани (например, из джуто-кенафного волокна, стекловолокна с различными типами переплетения волокон и др.), картон обычный и асбестовый, древесный шпон (листы лущеной древесины толщиной 0,3—1,0 мм), металлические листы, сетки и др.

Отвердители химические вещества, .которые благоприятствуют отверждению мономеров или олигомеров, введенных в полимерные композиционные материалы в процессе их производства. К их числу относятся катализаторы (кислоты, соли основания), инициаторы (органические и неорганические перекиси), ускорители (например, ускорители вулканизации каучуков).

Пластификаторы вещества, вводимые для снижения вязкости системы, снижения температуры стеклования полимера, повышения эластичности, морозостойкости, облегчения введения в полимер наполнителей и формуемости изделий. В качестве пластификаторов используют жидкие и смолообразные вещества, в том числе фталаты (дибутилфталат, диоктилфталат), фосфаты (трикрезилфосфат, трифенилфосфат), камфору, стеарат аммония и др.

Стабилизаторы вещества, вводимые в пластические массы для предотвращения или торможения процессов деструкции или чрезмерного структурирования в

404

эксплуатационный период работы полимерных конструкций и изделий. Их разделяют на экранирующие и блокирующие. Экранирующие вступают во взаимодействие с реагентом деструкции быстрее, чем полимер, что защищает последний от разрушения. Блокирующие быстро реагируют на возникающие свободные радикалы соединений, возникающих при деструкции, и предотвращают дальнейшее разрушение или старение молекулярных цепей. К числу таких ингредиентов можно отнести амины, фосфаты, фосфиты, тиоэфиры и др. Следует отметить, что комплексный стабилизатор выбрать затруднительно и поэтому комбинируют их в зависимости от конкретных эксплуатационных сред, в которых ра- ботает полимерная конструкция. Стабилизаторы вводят обычно в количестве не более 2— 3% от массы полимера.

Ингибиторы и замедлители вещества, которые либо полностью превращают процессы полимеризации и поликонденсации, либо замедляют их скорость. Для этих целей используют гидрохинон, серу, ароматические амины, уротропин или гексаметилентетра-мин и др.

Красящие вещества вводят в композицию для придания изделию необходимого колера. В производстве пластмасс используют неорганические пигменты охру, мумию, сурик, умбру, ультрамарин, оксид хрома и др. и органические нигразин, хризоидин. Светлые тона пластмассам придают, вводя белые пигменты: литопон, диоксид титана, оксид цинка и др.

Парообразователи вспенивающие вещества для формирования ячеистой или пористой структуры материала. К наиболее распространенным порообразователям относятся твердые вспенивающие вещества порофоры, которые при нагревании разлагаются с выделением газов. При обратимом термическом разложении они выделяют карбонат аммония, бикарбонат натрия, применяемые в совокупности, а при необратимом термическом разложении азотосоединения, нитроазосоединения, сульфонилгидразиды. При химических реакциях выделяются углекислый газ, азот, аммиак; выделяются газы при реакции взаимодействия нитрита натрия с хлористым аммонием, металла (алюминия, цинка) с кислотами, вводимыми в полимерную композицию. К вспенивающим веществам относятся также жидкие порообразователи, выделяющие газы и образующие ячеистую структуру материала: бензол, изопентан. Имеются еще и газообразные вспениватели воздух, инертные газы. Все газы, выделяемые в процессе формирования структуры, под давлением фиксируют поры в размягченном полимере, Модификаторы твердые, жидкие или газообразные вещества, под влиянием которых происходит направленное изменение свойств полимеров.

Модификаторы применяются минерального или органического состава, в частности, хлор, кислоты, природные битумы, низкомолекулярные каучуки, растительные масла, канифоль, полиэфиры, полиамиды, латексы и др. С их помощью модификации подвергают при необходимости полимеры линейной и разветвленной структуры. В результате процесса синтеза формируются полимеры иного состава и иных свойств, например, они приобретают ранее отсутствующую теплостойкость или способность растворяться в органических растворителях, переходить из вязко-эластичного состояния в твердое с повышенной прочностью и т. п.

Растворители жидкие вещества, способные переводить в состояние раствора полимеры или некоторые другие компоненты пластмасс. Чем эффективнее растворитель, тем выше его растворяющая способность к данному полимеру, что оценивается по скоро- сти растворения, минимальной вязкости смеси, понижению температуры раствора и др. Растворители особенно необходимы при производстве лаков, красок, клеев, мастик, полимербетонов и полимеррастворов. Кроме растворителей различают сходные по функ- ции разбавители, способные растворять полимеры в присутствии активного растворителя или разбавлять ранее приготовленные растворы полимеров. Растворимость практически всегда возрастает с повышением температуры системы или концентрации аморфных участков. Содержание растворителя ограничивается определенным минимумом,

405

достаточным для выполнения технологических операций при отверждении полимера без помех.

В производстве пластмасс наиболее часто применяют растворители бензин, керосин, уайт-спирит, бензол, толуол, ксилолсоль-вент каменноугольный; скипидар, окситерпеновый растворитель; метилхлорид, дихлорэтан и хлорбензол; спирты метиловый, этиловый, бутиловый, изопропиловый; сложные эфйры метил-, этил-, бутил- и изоамилацетат. Каждый из растворителей имеет свою функциональную направленность. Для повышения универсальности применяют комплексные растворители

смеси двух и более соединений. Все растворители огнеопасны и, как правило, ядовиты, требуют повышенной внимательности при их употреблении и хранении.

406

11.3. ОСНОВНЫЕ ТЕХНОЛОГИЧЕСКИЕ ОПЕРАЦИИ

При изготовлении пластмасс и строительных материалов (изделий) из них осуществляются технологические операции, свойственные всем искусственным строительным конгломератам: подготовительные работы по активизации составляющих; дозирование компонентов и их перемешивание в смесительных аппаратах; формование изделий методами вальцевания (на каландрах), горячего прессования, литья под давлением, экструзии и др.

Вальцевание на каландрах технологический передел, при котором размягченная композиция формуется в зазоре между вращающимися валками каландров, образуя ленту изделия, толщину и ширину которой можно регулировать. Такую технологию применяют для обработки поливинилхлоридных пластмасс при изготовлении пленок, рулонных материалов для пола и т. п. (рис. 11.6).

Рис. 11.6. Схема установки для производства поливинилхлоридного листа вальцово-каландровым способом: 1 — дозирование; 2 — роторный смеситель; 3 двухвалковые вальцы; 4 — конвейер; 5 — каландр; 6 охлаждающее устройство; 7 комплектующее устройство; 8 резательное устройство; 9 упаковочный автомат

Кроме того, для изготовления.рулонных материалов на тканевой подоснове используют промазной способ. Основными технологическими операциями изготовления изделий промазным способом служат: нанесение линолеумной массы на ткань, термообработка, уплотнение и охлаждение готовой линолеумной ленты.

Прессование изготовление изделий в металлических пресс-формах. Материал (пресс- порошок), заполнивший форму, под действием теплоты и давления превращается в готовое изделие заданной конфигурации. При этом различают:

а) метод прямого прессования, предусматривающий следующие технологические операции: загрузку готовой композиции в нагретую пресс-форму, собственно прессование, выдержку пресс-материала под давлением и выгрузку изделия (рис. 11.7); б) метод литьевого прессования (литье под давлением), при котором технологические операции осуществляют в такой последовательности: закрытие пресс-формы, установка

407

на ней загрузочной камеры с горячим пресс-материалом (на один цикл работы), создание давления на поршень загрузочной камеры для заполнения пресс-формы вязко-текучим пресс-материалом, поднятие загрузочной камеры и разъем пресс-формы с извлечением готового изделия (рис. 11.8).

Рис. 11.7. Схема прямого прессования: 1загрузка пресс-материала; 2 замыкание формы; 3 формовка под давлением; 4 размыкание формы; 5 — готовое издение

Рис. 11.8. Схема литьевого прессования: а пресс-форма нагрета и закрыта; б подача расплавленного материала в пресс-форму; в разъем пресс-формы; 1 пуансон; 2 — загрузочная камера; 3 — пресс-материал; 4 — пресс-форма; 5 готовое изделие

Рис. 11.9. Схема одночервячного экструдера:

408

1 сменный мундштук; 2 электронагреватели; 3 термопары; 4 каналы охлаждения; 5 загрузочный бункер; 6 — эластичная муфта; 7 редуктор; 8 электродвигатель; 9 — втулка цилиндра; 10

корпус экструдера; 11 червяк; 12 — решетчатый дорн; 13 экструзионная головка

Экструзия процесс, при котором заданный профиль изделиям придается продавливанием размягченной исходной пластмассы через формообразующие устройства

экструзионную головку (рис. 11.9). С помощью таких шнековых экструзионных машин изготовляют погонажные изделия, трубы, пленки, линолеум для пола и др.

409

11.4. ОТВЕРЖДЕНИЕ ПОЛИМЕРНЫХ И НАПОЛНЕННЫХ ВЯЖУЩИХ ВЕЩЕСТВ

На стадии изготовления изделий полимерное связующее вещество чаще всего находится в вязкотекучем (пластическом) состоянии, что позволяет придать такое же состояние и формуемой конгломератной смеси. Можно применять полимерный материал и в виде пресс-порошков. Придание полимеру и смеси в целом вязкотекучего состояния осуществляется осторожным нагреванием или введением растворителей, мономеров и олигомеров, применением полимеров в эмульгированном состоянии и т. п. При нагревании важно довести полимер до пластического состояния, не допуская его термического разложения. Особенно удобны линейные полимеры, температура перехода в пластическое состояние которых находится значительно ниже начала термической деструкции. Они способны неоднократно переходить в пластическое состояние с возвращением к твердоупру-гому состоянию с понижением температуры. Если, однако, в процессе формования изделия и возникает частичная термическая деструкция с выделением низкомолекулярных соединении, то предусматриваемое заранее введение стабилизаторов химически связывает продукты распада, предотвращает процесс дальнейшего разрушения материала. Чтобы не допускать термического разложения, нередко приходится снижать температуру и увеличивать давление при формовании изделий для лучшего заполнения форм. Некоторые полимеры сравнительно легко переходят в состояние повышенной текучести, особенно при введении в них добавочного вещества, именуемого пластификатором, или мягчителем. И тогда формовать изделия удобно литьевым способом под давлением.

Весьма ограниченной текучестью обладают термореактивные полимеры, хотя и они, являясь сравнительно низкомолекулярными, могут формоваться при повышенных температурах без пластификатора, но становятся после отверждения хрупкими, неплавкими и практически нерастворимыми. Поэтому к термореактивным полимерам нередко добавляется небольшое количество термопластичного полимера.

После окончания формования изделия, а часто еще в процессе формования, происходит самопроизвольное отверждение связующего полимерного вещества. Для повышения эффективности отверждения и улучшения качества готового полимерсодержащего изделия могут быть добавлены к смеси некоторые вещества специального назначения. Среди них катализаторы и инициаторы (возбудители), например в виде кислот, солей сильных кислот, перекисей; от-вердители (сера, перекись, диамины и др.); противоокислители (ок-сиданты); ингибиторы (замедлители отверждения) и др. При необходимости в смесь вводят также порообразующие, красящие и другие вещества с целью получения у ИСК заданных свойств и структуры.

Вместо добавочных веществ большую пользу при отверждении некоторых полимеров приносят способы физического воздействия, например облучением или механическими напряжениями.

Процесс отверждения полимерных связующих веществ имеет свои специфические особенности, но тем не менее общие теоретические положения об отвердевании всех вяжущих веществ (см. 2.3) распространяются и на них.

При производстве ИСК на основе термопластичных полимеров последние применяют обычно в виде мелких гранул, смешиваемых с дисперсным наполнителем и добавками. Полученную смесь нагревают, переводя в жидкое или пластичное состояние. Последующее отверждение термопластичных полимеров, например в результате охлаждения изделий из пластичной смеси, приводит к образованию твердой аморфной массы. В отвержденном состоянии эти полимеры сходны с переохлажденной жидкостью и подобно, например, силикатным стеклам не имеют постоянной точки плавления, чем отличаются от кристаллических тел. Объясняется это явление тем, что термопластичные полимеры состоят из макромолекул разной степени полимеризации и поэтому разных

410

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]