Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

STROITEL_NOE_MATERIALOVEDENIE_RYB_EV

.pdf
Скачиваний:
91
Добавлен:
01.05.2015
Размер:
7.29 Mб
Скачать

Рис. 10.1. Технологическая схема производства окисленного битума: a в установках периодического действия: 1 битумный куб; 2 труба для отвода отработанного воздуха и газа; 3 труба для подачи воздуха; 4 — компрессор; 5 воздушная магистраль; 6 насосы; 7 — магистраль для подачи битума; 8 холодильник для охлаждения битума; 9 — маточник; 10 газосборник; 11 дымовая труба; 12 теплообменник (емкость) для тяжелого нефтяного остатка; 13 магистраль для подачи гудрона; 14 раздаточник; б в установках непрерывного действия: 1 емкость для сырья; 2 компрессорная установка; 3 воздушная магистраль; 4 паровая магистраль; 5 — обратная воздушная магистраль с ловушками; 6 битумные кубы; 7 насос; 8аварийная емкость; 9 парообразователь; 10 раздаточник; 11 подающая магистраль; 12 обратная магистраль; 13 насос; 14 куб

Газы и пары выбрасываются в атмосферу, а окисленный битум стекает в приемный бак. Продолжительность окисления намного сокращается по сравнению с другими способами производства, а качество битума выше, чем при окислении в кубах.

Производство крекинговых битумов, которые тоже могут быть остаточными и окисленными, основано на расщеплении сырья при высоких температурах (до 450°С) и давлении (до 5 МПа). Мазут распадается на более легкие и устойчивые углеводороды и на менее легкие и неустойчивые углеводороды и их производные. Неустойчивые углеводороды в процессе полимеризации образуют асфальтено-смолистые вещества. Остаточные крекинг-битумы получают путем перегонки под вакуумом крекинг-остатков; окисленные окислением тех же остатков в кубовых или трубчатых установках воздухом по технологическим схемам, принятым для производства обычных нефтяных битумов из гудронов.

361

Рис. 10.2. Технологическая схема окисления битума на непрерывно-действующей трубчатой установке: 1 реактор; 2 циклонная печь для сжигания газа; 3 сепаратор; 4 продуктовый бак; 5 продуктовый насос; 6 насос сырьевой паровой; 7 — насос циркуляционный паровой

Битумы деасфальтизации получают из гудрона, обрабатываемого предварительно пропаном или дихлорэтиловым эфиром (хлорек-сом). С помощью такой обработки из масляного гудрона извлекается дополнительное количество горюче-смазочных фракций, тогда как асфальтены и тяжелые смолы оседают, образуя экстракт с малым содержанием масел. Из этого экстракта испаряют растворитель и получают битум, именуемый экстрактным (или битумом деасфальтизации). Он отличается невысоким качеством, имеет повышенную хрупкость при низких температурах. Для уменьшения вязкости этих битумов приходится перед употреблением смешивать их с гудроном.

Состав, структура и свойства битумов (природных и нефтяных) имеют некоторые непринципиальные различия. Вместе с тем, они характеризуются сложным и многообразным составом основных углеводородов, главным образом метанового (CnH2n+2), нафтенового (CnH2n) и ароматического (CnH2n-6) рядов. В состав основных угле- водородных соединений битума обычно входят также кислород, азот, сера, ванадий, железо, никель и другие элементы. Основная часть молекул битума состоит из 25 — 150 атомов углерода. В зависимости от числа атомов в молекулах и их взаимного расположения изменяются свойства вещества. Например, чем больше молекулярная масса одного и того же соединения, тем сильнее в нем межмолекулярное взаимодействие. Молекулярная масса молекул битумов составляет 400—5000. Ароматические углеводороды имеют повышенную устойчивость при воздействии теплоты, кислорода и ультрафиолетовых лучей; их окисление сопровождается образованием смол. Метановые углеводороды (парафины) представляют собой прямые цепи, состоящие из многократно повторяющихся звеньев -СН2- с метальными группами СН3, при отрицательных темпера- турах способны выкристаллизовываться, ухудшая свойства битумов. Нафтеновые углеводороды при окислении частично переходят в смолы.

Элементарный состав битумов колеблется в пределах: С 70—87%, Н 8—12%,, О 0,2—12%, S — 0,5—7%, N — до 1%. В нефтяных битумах содержание кислорода меньше (до 2%), чем в природных, а содержание углерода изменяется в меньших пределах (84— 87%); кислород, сера, азот входят в состав активных функциональных групп: ОН, N2H, SH, СООН. В целом, однако, элементарный состав дает лишь весьма приближенное представление о свойствах битумов, поэтому чаще пользуются групповым составом. Разделение битума на отдельные группы соединений, близких по строению и свойствам, основано на неодинаковой растворимости их в растворителях (бензоле, сероуглероде и др.), а также различной избирательной адсорбируемости силикагелем, флоридином и другими адсорбентами.

362

В групповой состав битума входят масла, извлекаемые растворением их в петролейном эфире или легком бензине. Масла состоят из углеводородов парафинового, нафтенового и ароматического рядов относительно несложного строения с молекулярной массой 300— 600. Они имеют светло-желтый цвет и придают битуму подвижность и текучесть. Истинная плотность менее 1 г/см3. Содержание масел в битумах 35—60% (по массе). Отношение количеств С:Н характеризует степень ароматичности и составляет для группы масел 0,55—0,60.

Вторым групповым компонентом битумов являются смолы. Они состоят из углеводородов циклического и гетероциклического строения с молекулярной массой 600—1000, имеют темно-коричневый цвет, истинную плотность, равную примерно 1 г/см3. Содержат наибольшее количество сернистых, азотистых и кислородных произ- водных углеводородов (эти соединения полярны), что придает им поверхностную активность, а битуму улучшение адгезии к каменным материалам, которые участвуют в ИСК в качестве зернистых материалов (заполнителя). Величина С:Н составляет 0,6—0,8. Смолы хорошо растворяются в бензоле, хлороформе и представляют собой легкоплавкие, вязкопластичные вещества. Их присутствие при дает битуму эластичность, водоустойчивость. Содержание смол в битумах 20—40% (по массе).

Асфальтены твердые неплавкие вещества с плотностью немного более 1 г/см3, их молекулярная масса составляет 1000—5000. Они растворимы в хлороформе, горячем бензоле и четыреххлори-стом углероде, но не растворимы в легком бензине. В асфальтенах атомное отношение С:Н составляет 0,8—1,0. Их содержание повышает температуростойкость, вязкость и твердость битумов. Обычно в битумах содержится 10— 40% (по массе) асфальтенов. Под действием ультрафиолетовых лучей они становятся нерастворимыми в бензоле, переходя в карбены.

Карбены и карбоиды содержатся в основном в крекинг-битумах в количестве 1—3%. Карбены по своим свойствам и составу близки к асфальтенам, но содержат больше углерода и имеют большую плотность. Они не растворяются в горячем бензоле и четыреххлористом углероде, растворимы только в сероуглероде. Карбоиды твердые вещества, нерастворимые в известных растворителях. С увеличением содержания карбенов и карбоидов увеличивается вязкость и хрупкость битумов. Эти твердые вещества в битумах относятся к кислород- и серосодержащим полициклическим соедине- ниям.

Асфалътогеновые кислоты хорошо растворяются в этиловом спирте, являются полярными и выполняют функции поверхностно-активных веществ. К этой же группе относят ангидриды асфальтогеновых кислот. Общее содержание асфальтогеновых кислот и их ангидридов в битумах до 3%. Они способствуют высокой адгезии битумов к каменным материалам.

Парафины относятся к твердым метановым углеводородам, они ухудшают свойства битумов. Особенно неблагоприятное влияние оказывают крупнокристаллические парафины (снижается пластичность и увеличивается хрупкость битумов). Содержание парафинов в битумах может составлять 6—8%.

По внутреннему строению битум представляет собой сложную коллоидную систему, дисперсионной средой в которой является раствор смол в маслах, а дисперсной фазой асфальтены, карбены и карбоиды, коллоидно-растворенные в среде до макромолекул раз- мером 18—20 мкм. В пограничной зоне адсорбированы асфальтогеновые кислоты, плотно удерживаемые на макромолекулах асфальтенов.

Под влиянием солнечной радиации, высоких температур, кислорода воздуха групповой состав битумов изменяется за счет химического перехода масел в смолы, а смол в асфальтены. Групповые углеводороды входят в состав битумов в различных соотношениях их масс, что, естественно, предопределяет их структуру и свойства. Структура битумов становится то типа золь, с малой вязкостью, то более плотной типа гель, с повышенной вязкостью, что зависит и от температуры битума. При нагревании или

363

увеличении содержания масел структура гель переходит в золь. Вязкость битумов при их нагревании быстро изменяется падает.

Твердые битумы (типа гель) характеризуются условно глубиной проникания стандартной иглы при действии на нее груза массой 100 г в течение 5 с при температуре 25°С или 200 г в течение 60 с при С; она выражает величину, обратную вязкости, т. е. текучесть, и определяется пенетрометром в градусах. Каждый градус означает погружение иглы на 0,1 мм. При температурах 25°С пенетрация вязких и твердых битумов П25 = 5—300. Условная вязкость жидких битумов (типа золь) характеризуется временем истечения определенного количества битума (50 см3) через отверстие вискозиметра при одной-двух стандартных температурах, а именно: C255 и С605. Здесь верхний индекс величина диаметра (в мм) стандартного отверстия, нижний температура испытания.

Кроме пенетрации, у вязких и твердых битумов определяют еще пластичность и температуру размягчения. Пластичность определяют по растяжимости образцов- восьмерок на специальном приборе дуктилометре при температурах — 25 и С (для улучшенных битумов). Температура размягчения отражает переход битума из твердого или вязкопластического состояния в жидкое. Она определяется по методу «Кольца и шара». По особой методике нередко фиксируют также температуру перехода битума в хрупкое состояние (прибор Фрааса). По разности температур размягчения и хрупкости судят о качестве битумного материала: чем больше интервал этих температур (именуемый как интервал пластичности), тем выше качество. О теплоустойчивости битума судят по индексу пенетрации (ИП).

Существенной особенностью битумов является их высокая адгезия прилипание к поверхности минеральных и органических материалов. Разработано несколько методов и приборов для определения адгезии. По визуальному методу степень прилипания битума к каменному материалу оценивается по пятибалльной шкале. Если пленка битума на поверхности гравия или щебня полностью сохранилась после кипячения в дистиллированной воде, прилипание битума отличное и оценивается 5 баллами; если пленка битума после кипячения полностью смещается с минеральных зерен и всплывает на поверхность воды, прилипание очень плохое и оценивается в 1 балл.

В зависимости от показателей основных свойств вязкие (твердые) нефтяные битумы подразделяют на марки. Битумы нефтяные (БН) вырабатывают четырех марок: БН 60/90, БН 90/130, БН 130/200, БН 200/300. Цифры дроби указывают на допустимые для данной марки пределы показателей пенетрации при 25°С. Битумы нефтяные дорожные выпускают пяти марок: БНД 40/60, БНД 60/90, БНД 90/130, БНД 130/200 и БНД 200/300.

Битумы марок БНД отличаются хорошим сцеплением с каменными материалами имеют

достаточно высокую пластичность при отрицательных

температурах, проявляют

стойкость к климатическим воздействиям.

 

Для изготовления кровельных и гидроизоляционных материалов применяют битумы марок БНК 45/180 (пропиточные), БНК 90/40 и БНК 90/30 (покровные). Числитель дроби указывает среднее значение показателей температуры размягчения (в °С), знаменатель среднее значение показателей пенетрации при температуре 25 °С (табл. 10.1-10.3). Предусмотрены марки нефтяных битумов и для некоторых других технологий при изоляции трубопроводов от коррозии (марки БНИ), для строительных целей (марки БН), для приклеивания и окраски при устройстве гидроизоляции и изготовления лаков повы- шенной теплостойкости (марки улучшенных битумов, полученных с помощью особой химической обработки и т. п.).

Таблица 10.1. Характеристика битумов нефтяных дорожных (БНД) (ГОСТ 22245—76)

 

Нормы для марки

 

 

 

Показатели

БНД

БНД

БНД

БНД

БНД

 

130/200

200/300

90/130

«0/90

40/60

Глубина проникания иглы, мм:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

364

при 25°С

 

201—300

131—200

91—130

61—90

40—60

при С, не менее

 

45

35

28

20

13

Температура размягчения

по

35

39

43

47

51

«Кольцу и шару», °С, не ниже

 

 

 

 

 

 

Растяжимость, см,

 

 

 

 

 

 

не менее:

 

 

 

 

 

 

при 29°С

 

65

60

50

40

при С

 

20

6

4,2

3,5

Таблица 10.2. Характеристика битумов нефтяных строительных (ГОСТ 6617—76)

Показатели

Нормы для марки

 

БН 50/50

БН 70/30

БН 90/10

 

Глубина проникания иглы при 25°С, мм

41—60

21—40

5—20

Температура размягчения по «Кольцу и шару», °С, не ниже

50

70

90

Растяжимость при 25°С, см, не менее

40

3

1

 

 

 

 

Таблица 10.3. Характеристика битумов нефтяных кровельных (ГОСТ 9548—74)

 

Нормы для марки

 

Показатели

БНК

БНК

БНК

 

45/180

90/40

90/30

Глубина проникания иглы при 25°С, мм

140—300

35—45

25—5

Температура размягчения по «Кольцу и шару»,

°С

40—50

85—95

85—95

240

240

240

Температура вспышки, °С, не ниже

 

 

 

Кроме вязких (твердых) в строительстве используют жидкие битумы как подогретыми до температуры около 100°С, так и в холодном состоянии (температурой 15—20°С). Со временем жидкие битумы загустевают за счет испарения летучих фракций, окисления и других процессов. Важнейшие свойства жидких битумов: вязкость, скорость загустевания и свойства остатка после испарения летучих фракций, адгезия, температура вспышки, погодоустойчивость и др.

Взависимости от скорости загустевания жидкие битумы подразделяются на среднегустеющие (СГ), получаемые разжижением вязких дорожных битумов жидкими нефтепродуктами; медленногустеющие (МГ и МГО), получаемые из остаточных или частично окисленных нефтепродуктов или их смесей. Класс битума устанавливают по количеству испарившегося разжижителя при выдерживании образца битума в термостате или в вакуумтермостате при определенных температурах.

Взависимости от класса и вязкости жидкие битумы имеют марки: СГ 40/70, СГ 70/130, СГ

130/200, МГ 40/70, МГ 70/130, МГ 130/200, МГО 40/70, МГО 70/130, МГО 130/200.

Жидкие нефтяные битумы класса СГ приготовляют путем разжижения вязких битумов керосином, бензином, лигроином и др.; медленногустеющие битумы получают, применяя в качестве разжижителей масляные нефтепродукты, природные смолистые нефти, мазут и т. п. Медленногустеющие битумы могут быть природными тяжелые смолистые нефти. При добавлении разжижителя происходит изменение дисперсной структуры вязкого битума. Некоторые разжижители могут вызвать коагуляцию дисперсной фазы битума и ухудшить его вяжущие свойства, поэтому разжижитель должен иметь требуемый фракционный состав и полярность, аналогичные вязкому битуму.

При приготовлении жидких битумов вязкие битумы нагревают до температуры 80—90°С, если применяют легкие разжижители, и до температуры 130—140°С для тяжелых разжижителей; последние предварительно подогревают в отдельной емкости, а затем до- бавляют в разжижаемый битум при постоянном перемешивании смеси.

365

При нагревании жидких нефтяных битумов необходимо соблюдать требуемую температуру, предусмотренную нормативно-технической документацией для каждой марки, и более краткое выдерживание их при этих температурах. Требуется соблюдать также технику противопожарной безопасности. В качестве природных жидких битумов в строительстве используют тяжелые высокосмолистые нефти.

366

10.1.2. ДЕГТИ

Дегти органические вяжущие вещества вязкой или жидкой консистенции, получаемые как побочный продукт при сухой (деструктивной, без доступа воздуха) перегонке твердых топлив (каменного или бурого угля, торфа, сланцев, древесины). Наибольшим распространением в строительстве пользуются каменноугольные дегтевые вяжущие вещества. Широко применяют также и сланцевые дегти, называемые сланцевыми битумами. Ниже рассмотрены технологии каменноугольных и сланцевых дегтей.

Производство каменноугольного дегтя. Вначале получают сырой каменноугольный деготь в процессе коксования или газификации угля, или полукоксования при выработке генераторного газа. С этой целью в коксовую печь загружают подготовленную шихту из обогащенных каменных углей разных марок. Шихту нагревают без доступа воздуха; коксование заканчивается при температуре 1100—1200°С после полного удаления из угля летучих веществ. В процессе коксования пары сырой каменноугольной смолы и ам- миачной воды улавливаются в холодильниках, где происходит их конденсация. Вместе с парами в холодильниках осаждаются мельчайшие твердые частицы угля и кокса. Далее продукты конденсации направляются в дегтеотстойники. В них частично сырая смола отделяется от аммиачной воды. Выход сырой смолы или сырого дегтя составляет до 5% массы коксуемого угля.

Вгазовых печах (ретортах) газификация каменного угля осуществляется при температуре 1250—1300°С, выход сырой смолы при этом еще меньше, чем при коксовании. Полукоксование шихты в печах производится при температуре 500—700°С с получением низкотемпературного сырого дегтя.

Сырой деготь содержит большое количество легколетучих и кристаллических, а также токсичных и окисляемых веществ, что приводит к резкому ухудшению его свойств во времени (старению). Поэтому его отправляют на дегтеперегонную установку. Технологи- ческая схема дегтеперегонной установки периодического действия показана на рис. 10.3.

Втеплообменник 5 загружают сырой деготь, и путем подогрева отходящими парами дегтевых масел до 80—100°С он частично обезвоживается. Далее этот деготь поступает в перегонный куб 7, где при подогреве из него выделяются пары масел, которые по шлемовой трубе 6 направляются в змеевик теплообменника. В холодильнике 3 происходит полная конденсация паров дегтя, после чего дистилляты поступают в сборники 1, в которых собирают фракции, отогнанные в определенных интервалах температур. После окончания перегонки в кубе остается пек, который через сливную трубу 8 выпускают в пекотушитель 9 (пеки легко воспламеняются уже при температуре 400°С). Охлажденный до 150°С пек поступает в пеко-вую яму или в тару. В сборник из теплообменника поступает конденсат, который образуется в холодильнике 4. Далее цикл повторяется.

Рис. 10.3. Технологическая схема дегтеперегонной установки периодического действия:

1, 2 сборники продуктов перегонки; 3, 4 водяные холодильники; 5 тешюобменник-обеэвоживатель; 6 шламовая труба; 7 вертикальный куб; 8 сливная труба; 9 пекотушитель; 10 пековая емкость

367

При непрерывном процессе перегонка сырого дегтя производится в вакууме. На таких установках кубы последовательно соединены трубопроводом, при этом деготь перемещается из одного куба в другой и в каждом кубе отгоняется определенная фракция. В последнем кубе собирается пек. Каменноугольные пеки выпускают двух видов: 1) среднетемпературный марок А и Б и 2) высокотемпературный (табл. 10.4).

368

Таблица 10.4. Технические характеристики каменноугольных пеков

Показатели

 

Среднетемпературный

Высокотемпературный

 

А

Б

 

 

 

Внешний вид

 

расплавленный или твердый в виде

твердый в виде гранул

 

чешуек или гранул черного цвета

или чешуек черного цвета

 

 

Температура

 

67—75

76—83

135—150

размягчения,

°С

Зольность,%, не более

 

0,4

0,4

0,4

 

 

 

 

Содержание воды, %, не

4

 

3

более: в твердом

 

0,5

 

в жидком

 

 

 

 

 

 

Истинная плотность пеков 1,1—1,26 г/см', температура вспышки в открытом тигле 170—

190°С.

Пеки не растворимы в воде, но хорошо растворяются в скипидаре сероуглероде и хлороформе, имеют достаточную стойкость к растворам солей и кислот, более гнилостойки, чем битумы. На основе пеков изготовляют приклеивающие мастики в гидроизоляционных работах. Для получения пека с повышенной температурой раз- мягчения проводят перегонку дегтя с рециркуляцией воздуха, при этом происходит отбор дистиллятов. Хлорирование и сульфирование пеков повышает их температуру размягчения до 140 С.

Свойства каменноугольных дегтей зависят от их состава и структуры Основным механическим свойством дегтей является вязкость, которая быстро снижается даже при незначительных повышениях температуры. Условная вязкость дегтей характеризуется временем истечения в секундах 50 мл дегтя через отверстие диаметром 5 или 10 мм при температуре 30 или 50°С. Вязкость дегтя определяют на стандартных вискозиметрах. В зависимости от вязкости дегти подразделяют на марки: Д-1, Д-2, Д-3, Д-4, Д-5, Д-6 (табл. 10.5.). Для получения дегтя требуемой вязкости нередко сплавляют два вида дегтя разной вязкости.

Таблица 10.5. Требования к каменноугольным дегтям

Показатели

Нормы для марок

 

 

 

 

Д-1

Д-2

Д-3

Д-4

Д-5

Д-6

 

 

 

Вязкость, с:

 

 

 

 

 

 

 

C 5

5—70

 

30

 

 

 

 

 

 

 

C10

5—20

21—

51—

121—

 

30

 

 

50

120

200

 

 

 

 

 

 

 

 

 

C10

100—80

50

 

 

 

 

 

 

 

Массовая доля воды, %, не более

3

1

1

1

1

1

 

Массовая доля веществ, не растворимых в

18

20

20

20

20

20

 

толуоле, %, не более

 

 

 

 

 

 

 

Массовая доля фракций, %, перегоняемых

 

 

 

 

 

 

 

до температуры, °С:

 

 

 

 

 

 

 

170

3

2

1,5

1,5

1,5

1,5

 

270

20

20

15

15

15

10

или

15

 

 

 

 

 

 

 

 

300

35

30

25

25

25

20

 

 

 

 

 

 

 

 

369

Температура размягчения остатка после

45

65

65

65

65

70

отбора фракций до 300°С, не более

 

 

 

 

 

 

Массовая доля фенола, %, не более

5

3

2

2

2

2

Массовая доля нафталина, %, не более

5

4

3

3

3

3

 

 

 

 

 

 

 

Как указывалось выше, дегти имеют повышенную способность к прилипанию благодаря большому количеству в их составе полярных групп веществ и фенолов. Однако фенолы токсичны, вымываются водой, поэтому их содержание ограничивают.

Биостойкость дегтей высокая, цвет черный, имеют специфический запах каменноугольной смолы, токсичны. Температура вспышкидегтей 150—190°С, температура воспламенения 180—270°С. Истинная плотность каменноугольных коксовых дегтей 1,1—1,3 г/см3, а газовых дегтей 1,0—1,2 г/см3.

Низкая погодоустойчивость и старение дегтей происходят в связи с испарением летучих веществ; этому способствует также наличие в дегтях ненасыщенных высокомолекулярных углеводородов, которые окисляются и полимеризуются, и активных веществ. Со временем групповой состав дегтя изменяется, что приводит к потере им пластических свойств при пониженных температурах, увеличению хрупкости дегтевых материалов. Для установления стабильности свойств дегтя определяют его фракционный состав и проводят испытания остатка после нагревания до 300°С.

Погодоустойчивость и степень устойчивости к изменению вязкости дегтя оценивают по содержанию в нем легких, средних и тяжелых масел, которое определяется разгонкой пробы дегтя в специальном аппарате стеклянном одношариковом дефлегматоре.

Температуру размягчения остатка, полученного после отгона фракций до 300°С, определяют так же, как и температуру размягчения битумов на приборе «Кольцо и шар». Для определения содержания фенолов в дегтях из фракции 170—270°С, полученной при перегонке пробы дегтя, извлекают фенолы щелочью и измеряют приращение объема щелочи. Определение нафталина заключается в измерении количества осадка, выде- лившегося при кристаллизации фракции 170—270°С.

С целью увеличения вязкости, повышения теплоустойчивости и улучшения других свойств в каменноугольную смолу или низкомарочный деготь при температуре 180— 200°С вводят серу и серосодержащие материалы. При этом происходит дегидратация углеводородов дегтя и изменяются межмолекулярные связи.

Улучшают качество дегтей введением минеральных дисперсных наполнителей в количестве до 30% (молотого известняка и доломита, каменноугольной и цементной пыли). Такие дегти называются наполненными. Их состав подбирают расчетом или

лабораторным путем. Наполненные дегти выпускают двух марок: ДН-7 вязкостью C1030 =

3—70 с и ДН вязкостью C1050 = 70—120 с.

Состав и структура каменноугольных дегтей и пеков. Дегти состоят из высокомолекулярных углеводородов в основном ароматического ряда и их производных, т. е. соединений углеводородов с серой, азотом и кислородом.

Дегти имеют переменный групповой состав в зависимости от сырья и технологии его переработки. Для определения группового состава деготь подвергают фракционной разгонке. В нем содержатся твердые, углистые неплавкие вещества, не растворимые в органических растворителях и называемые свободным углеродом, твердые неплавкие дегтевые смолы, растворимые только в пиридине; вязкопластичные плавкие дегтевые смолы, растворимые в бензоле и хлороформе, которые придают дегтям эластичность; жидкие дегтевые масла: легкие с температурой кипения до 170°С, средние — 170— 270°С, тяжелые 270—300°С и антраценовые 300—600°С; твердый остаток свыше 360°С называется пеком (в древесных дегтях варом).

370

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]