Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

STROITEL_NOE_MATERIALOVEDENIE_RYB_EV

.pdf
Скачиваний:
91
Добавлен:
01.05.2015
Размер:
7.29 Mб
Скачать

например, до удельной поверхности, равной 4000—4500 см2/г, как у быстротвердеющего шлакопортландцемента.

Этот продукт выпускают марок 300, 400 и 500. Он сероватого цвета с голубоватым оттенком. Плотность 2,8—3,0 г/см3, средняя плотность в рыхлом состоянии 1000— 1300, а в уплотненном 1400—1800 кг/м3; нормальная густота цементного теста 26— 30%; тонкость помола и равномерность изменения объема такие же, как у обычного портландцемента. Прочность цементного теста нарастает замедленно в начальный период твердения, но через 3—6 месяцев она превосходит прочность портландцемента той же марки.

Разновидностью шлакопортландцемента является быстротвер-деющий, который отличается меньшим содержанием шлака (до 50%), более высокой тонкостью помола, наличием каталитических добавок (AlCO3, FeCl3, NaCl и др.) в количестве 0,5—1,5% массы цемента. Этот цемент характеризуется более интенсивным нарастанием прочности в начальный период твердения теста, например через 3 суток предел прочности при сжатии не менее 14 МПа, а через 28 суток — 40 МПа. Его следует употреблять в течение 7—10 дней со дня изготовления, чтобы он не потерял активность при хранении.

Шлакопортландцемент применяют для изготовления железобетонных изделий и конструкций, твердеющих в пропарочных камерах, в конструкциях горячих цехов, гидротехнических сооружениях, подвергающихся сульфатной агрессии.

К смешанным вяжущим на основе воздушных вяжущих веществ относятся следующие.

Известково-пуццолановое вяжущее вещество, которое получают совместным помолом

15—30% воздушной извести с активными минеральными добавками. В этот состав вводят до 5% двуводного гипса. При затворении такого вяжущего водой происходит химическое взаимодействие между активным кремнеземом и известью:

CaO + SiO2 + nH2O = CaO·SiO2·nH2O.

Образующийся низкоосновный гидросиликат кальция обеспечивает гидравлические свойства вяжущего. Марки его М25, М50, М100иМ150.

Известково-пуццолановое вяжущее вещество применяют в строительных растворах и бетонах низких марок для подводных и подземных сооружений, а также в изделиях с тепловлажностной обработкой.

Известково-шлаковое вяжущее вещество получают совместным помолом доменных гранулированных шлаков с воздушной гашеной или негашеной известью (20—30%) и гипсом (до 3—5%). В присутствии воды известь реагирует с низкоосновными алюминатами и силикатами шлака, переводя их в высокоосновные гидроалюминаты и гидросиликаты кальция, а гипс обеспечивает образование кристаллов эттрингита.

Марки известково-шлакового вяжущего М50, М100, М150 и М200. Прочность повышается при использовании основных шлаков (М0 > 1). При применении высококачественных шлаков, извести-кипелки и при более тонком помоле известково- шлаковое вяжущее вещество может иметь марки М250 и МЗОО. Его применение то же, что и известково-пуццоланового вяжущего вещества.

Известково-кремнеземистое вяжущее вещество, получаемое в условиях автоклава,

представляет собой продукт синтеза химически активного сырья с образованием гидросиликатов цементирующей связки в искусственных силикатных конгломератах. Одним из наиболее часто используемых компонентов сырьевой смеси служит известь. Она обладает большой химической активностью к кремнезему при термовлажностной обработке. Поэтому вторым основным компонентом сырьевой смеси является кварцевый песок или другие минеральные вещества, содержащие кремнезем, например кварцит или другие кислые породы, кислые шлаки, золы. Чтобы химическое взаимодействие проходило интенсивнее (со сбережением тепловой энергии и топлива), кремнеземистый компонент подвергают тонкому измельчению. Непременным третьим химически активным компонентом сырьевой смеси служит вода.

241

Внастоящее время к самой распространенной составляющей автоклавных известково- кремнеземистых вяжущих веществ относят кальциевую известь. ГОСТ 9179—77

установлено, чтобы CaO + MgO было больше 70%, в том числе MgO не более 5%; CO2 меньше 8%, время гашения не более 20 мин. В природе чаще встречаются мергелистые и доломитизированные известняки, и поэтому проблема использования магнезиальной извести, получаемой обжигом таких известняков, остается весьма актуальной. Присутст- вие MgO свыше 5% приводит к запоздалому гашению этого оксида (периклаза) с

образованием Mg(OH)2 и появлению трещин в силикатных изделиях.

При автоклавной обработке образуются наиболее устойчивые низкоосновные

гидросиликаты с соотношением CaO:SiO2 в пределах 0,8—1,2, хотя на промежуточных стадиях отвердевания возможны и более высокоосновные химические соединения.

Вформировании структуры и свойств силикатного камня как цементирующей связки на основе известково-кремнеземистого вяжущего вещества большую пользу приносят добавочные компоненты (добавки), выполняющие функции ускорителей процессов хими- ческого становления гидросиликатов кальция и магния. В результате синтеза с

образованием тонкоигольчатых чешуйчатых CSH(B) и тоберморита (C5S6H5) происходит общая кристаллизация новообразований и формирование микроструктуры камня. В

высокоизвестковых смесях синтезируются также гиллебрандит C2SH и другие комплексные соединения.

Активность вяжущего вещества, выражаемая прочностью известково-кремнеземистого камня оптимальной структуры после автоклавной обработки, как и другие структурно-

чувствительные свойства, зависит от соотношения ИТ:ПМ (по массе), где Ит известковое тесто как дисперсионная среда, Пм песок молотый как кремнеземистый компонент и как дисперсная фаза в этой гетерогенной системе. Исследования показали, что пределы прочности при сжатии, на растяжение, при изгибе и другие свойства силикат- ного камня принимают экстремальные значения, когда это соотношение является минимальной величиной при принятых технологических параметрах, что соответствует закону створа. Получаемая величина активности вяжущего не предусмотрена стандартной оценкой, но служит расчетной, необходимой для определения прочности ИСК на его основе. К таким конгломератам относятся плотные силикатные бетоны, железобетон, из ячеистых бетонов газосиликат, пеносиликат, а также силикатный кирпич и другие изделия автоклавного твердения.

Сульфатно-шлаковые вяжущие вещества получают при активизации доменного гранулированного шлака двуводным и полуводным гипсом и ангидридом с добавкой оксидов кальция и магния в виде обожженного доломита, извести или портландцемента. Существуют две их разновидности: гипсошлаковое и шлаковое бесклинкерное. Чаще применяют гипсошлаковое, как сильно гидравлическое вяжущее вещество. Оно состоит из 75—85% доменного гранулированного шлака, 15—20% двуводного гипса или ангидрита, до 5% портландцементного клинкера (можно заменить 2% оксида кальция). Используют шлаки с повышенным содержанием глинозема (15-—20%). Это медленно твердеющее вещество марок М150, М200 и МЗОО. Наряду с обычным применением в бетонных и железобетонных наземных конструкциях его целесообразно применять для подводных частей сооружений, работающих в условиях сульфатной агрессии. Шлаковое бесклинкерное вяжущее называют так вследствие очень малого содержания в нем активизирующей добавки, состоящей из 5—8% ангидрита и 5—8% обожженного доломита; остальная масса доменный гранулированный шлак в количестве 85—90%.

Гипсоцементнопуццолановое вяжущее вещество (ГЦПВ)1 получают смешением 50—75%

полуводного гипса, 15—25% портландцемента и 10—25% активной минеральной добавки в виде диатомита, трепела, опоки и др. Обычно не рекомендуется смешивать портлан- дцемент с большим количеством гипса, так как образующиеся высокосульфатные виды

1 Предложено А.В. Волженским и А.В. Ферронской.

242

гидросульфоалюминатов кальция при кристаллизации значительно и неравномерно увеличиваются в объеме и могут вызвать трещины в затвердевшем конгломерате. Но при введении активной минеральной добавки, связывающей часть свободной извести в гидросиликаты кальция, образуются низкоосновные гидросульфоалюминаты без значительного увеличения в объеме, что обеспечивает трещиноустойчивость изделий из ГЦПВ.

Предел прочности при сжатии этого вяжущего вещества, полученного на обычном строительном гипсе, составляет 10—15 МПа, а на высокопрочном 30—40 МПа. Конец схватывания наступает не позднее 20 мин, что удобно для производства.

ГЦПВ применяют для изготовления стеновых панелей, а также санитарно-технических кабин и других конструкций.

Шлакощелочные цементы представляют собой гидравлические вяжущие вещества, получаемые тонким измельчением гранулированного шлака совместно с малогигроскопичным щелочным компонентом или затворением молотого шлака растворами соединений щелочных металлов: натрия, калия или лития. Шлаки используют доменные или электротермофосфорные гранулированные (ГОСТ 3476—74) с тонкостью помола, характеризуемой удельной поверхностью не ниже 3000 см2/г. Могут быть использованы и другие разновидности шлаков, например титанистые, никелевые, ферромарганцевые, ваграночные, мартеновские после их предварительного испытания. Щелочные компоненты в виде соединений щелочных металлов составляют 5—15% массы шлака (в пересчете на сухое вещество). Используют их водные растворы 18—40%-ной концентрации по массе. К таким соединениям относятся: едкие щелочи (едкий натр, едкое кали), смесь плавленных щелочей; сода кальцинированная техническая, содощелочной шлак, поташ, фтористый натрий; силикатные соли и растворимые стекла с силикатным модулем 0,5—2,5, в том числе орто-мета-дисиликаты натрия и калия; алюминатные соли

алюминаты натрия и калия. Присутствие в шлакощелочных цементах значительных количеств щелочных соединений благоприятствует формированию в продуктах гидратации водостойких щелочных гидроалюмосиликатных новообразований типа

R2O·3Al2O3·6SiO2·nH2O или R2O·Al2O3·(2-4)SiO2·nH2O.

Наиболее высокую гидравличность имеют шлакощелочные цементы, затворенные растворами едких щелочей, а активность их выше при твердении в воде. В зависимости от состава алюмосиликатной составляющей эти цементы имеют несколько разновидностей: бездобавочный цемент, цемент с добавками горной породы, глинистых минералов, горелых пород, щелоче- и кремнййсодержащих веществ, карбонатов и др. Шлакощелочные цементы разделяются на марки: 400, 500, 600, 700, 800, 900 и 1000. При испытании в тесте нормальной густоты прочность цементов изменяется в пределах 60— 180 МПа. При испытании в растворе состава 1:3 некоторые шлакощелочные цементы превышают в 1,5—2 раза прочность высокомарочного портландцемента. Шлакощелочные цементы на жидком стекле отличаются особо быстрым набором прочности: до 20—25 МПа в суточном возрасте. При использовании в качестве добавки каолина в количестве 20—50% получают декоративные шлакощелочные цементы с введением в их состав красящих минеральных веществ. К этим щелочестойким пигментам относятся железный сурик, оксид хрома, охра и др., добавляемые в количестве до 15% (по массе), или органические пигменты, например фталоцианино-вые,до 0,3%. Кроме каолина, белизны цементов можно достичь добавлением известняка или доломита, если их коэффициенты белизны составляют не менее 90% по отношению к белизне BaSO4.

Шлакощелочные цементы используют для монолитных и сборных бетонов и железобетона в жилищном, гидротехническом и автодорожном строительстве. Первый в мире жилой дом из монолитного шлакощелочного бетона построен в г. Липецке в 1987— 88 гг.

243

9.2. ВЗАИМОДЕЙСТВИЕ ВОДЫ ИЛИ ВОДНЫХ РАСТВОРОВ С НЕОРГАНИЧЕСКИМИ ВЯЖУЩИМИ ВЕЩЕСТВАМИ И ПРОЦЕССЫ ТВЕРДЕНИЯ

Неорганические вяжущие вещества, как отмечалось, используют в производстве различных ИСК. Среди них тяжелые, легкие и ячеистые бетоны, строительные растворы, силикатные бетоны и многое другое. Находясь сначала в вязкопластичном состоянии в виде теста, неорганические вяжущие вещества быстро или постепенно отвердевают, цементируя заполняющие компоненты уплотненной конгломератной смеси с образованием камневидного монолитного изделия. Процессы отвердевания обусловлены химической кинетикой, т.е. скоростью гомогенных и гетерогенных реакций, продолжительностью этапов диспергирования и конденсации, изложенных выше в общей теории отвердевания ИСК (см. 2.2.5). Обычно характер процессов отвердевания усложнен полиминеральным составом вяжущего вещества, непрерывным изменением концентраций реагирующих соединений в соответствии с законом действия масс.

Для каждой разновидности вяжущего вещества имеются свои специфические особенности взаимодействия воды с вяжущим, связанные с их составом, — химическим, минералогическим, гранулометрическим и т. д., что привело к ряду теорий твердения, помогаю-щих в решении практических задач химической технологии. Среди наиболее известных: теория Ле-Шателье о кристаллизации из растворов; теория Михаэлиса о преимущественном коллоидальном состоянии твердеющих веществ; теория А.А. Байкова, в которой как бы обобщаются эти две теории с изложении новых представлений о твердении через образование коллоидов и кристаллогидратов. Эти теории получили дальнейшее развитие в работах Е.А. Шейкина, В.Б. Ратинова и др.

Характер процессов взаимодействия с жидкой средой обусловлен тем, что неорганические вяжущие вещества, во-первых, находятся в высокодисперсном состоянии, и, во-вторых, основным типом связи в их молекулах является ионный. Вследствие этого мельчайшие твердые частицы вяжущих веществ преимущественно состоят из ионных кристаллических решеток с высокой суммарной энергией связи. Вместе с тем сохраняется характерная для ионной связи способность к электростатическому взаимодействию с другими ионами; сохраняется качественный признак ионной связи: она не обладает свойством насыщаемости, что определяет способность молекул ионных соединений к агрегации.

Согласно общей теории отвердевания ИСК характерно наличие двух стадий. На первой стадии исходное высокодисперсное неорганическое вяжущее вещество переходит в качественно измененную, метастабильную систему. На второй стадии эта система переходит в относительно устойчивое камневидное вещество. По сравнению с исходным вяжущим веществом в состав нового, камневидного вещества входит до 60% и более новообразований и меньшая часть исходного вещества, не успевшего претерпеть деструкционных изменений. Эти две стадии не изолированы между собой, а накладыва- ются одна на другую без четкой границы раздела.

Первая стадия начинается с момента объединения неорганического вяжущего вещества с жидкой средой и образования суспензии или пасты определенной концентрации. В возникшей гетерогенной системе немедленно начинаются и протекают деструкционные процессы с неполным или полным разрушением самих частиц вяжущего вещества и переходом их в водный раствор. Переход твердой фазы в раствор является значимым на этой стадии и может быть зафиксирован индикаторами (лакмусом, фенолфталеином и др.), так как чаще всего водная среда не остается нейтральной, что подтверждается возрастанием водородного показателя pH. Этот переход в другое агрегатное состояние происходит не одновременно в отношении всех твердых частиц вяжущего вещества вследствие их различной дисперсности и растворимости, поэтому процесс усложнен протеканием как растворения, так и формирования в суспензии (пасте) уже новых, твердых фаз. При растворении происходит, во-первых, распад растворяемого вещества до

244

размеров молекул с последующим молекулярным взаимодействием и изменением молекулярной структуры раствора; во-вторых, протекают определенные химические процессы. Наиболее типичным выражением последних является ионная реакция, поскольку ей пред шествует расщепление молекул вяжущего вещества на положительные и отрицательные ионы.

Неорганические вяжущие вещества обладают неодинаковой растворимостью. Среди них группа труднорастворимых вяжущих с содержанием силикатов, алюмосиликатов или других оксисолей моно-и поликремниевых кислот. Их молекулы содержат комплексные анионы и активные положительно заряженные ионы Ca2+, Аl3+ и др.; при их взаимодействии возникают устойчивые соединения. Кроме того, твердые частицы этих вяжущих неоднородны по фазовому составу и представлены агрегатами средних солей с разной степенью их растворимости. Другая группа более однородные вяжущие ве- щества по своему химическому составу. Она представлена основными оксидами, которые обладают большей растворимостью в водной среде, чем труднорастворимые оксисоли. Растворение не протекает мгновенно, а начинается в суспензиях или пастах с поверхности твердых частиц. С увеличением степени дисперсности частиц вяжущего растворение ускоряется и облегчается.

Поскольку при растворении происходят не только агрегатные превращения (т. е. твердое вещество переходит в жидкое состояние), но и химическое взаимодействие растворенных веществ с растворителем, то общий процесс растворения обычно сопровождается выде- лением тепловой энергии. Рост температуры благоприятствует, как правило, увеличению скорости растворения, хотя известны некоторые вяжущие вещества, например полуводный сульфат кальция, у которых с повышением температуры растворимость в водной среде понижается. Деструкции твердых частиц вяжущего вещества при растворении благоприятствует также высокая диэлектрическая проницаемость воды, вследствие которой резко ослабляется (почти в 80 раз1) притяжение между разноименными электрическими зарядами, т. е. сильно уменьшается связь между ионами. Поэтому молекулы даже труднорастворимых солей неорганических вяжущих веществ в присутствии воды сравнительно легко расщепляются на ионы (диссоциируют). Вяжущие вещества типа оксисолей диссоциируют на ионы металла и ионы кислотных остатков, а вяжущие вещества основания, которые возникают вследствие реакции основных оксидов с водой, диссоциируют на ионы металла и гидроксильные ионы ОН-. Так, минералы портландцементного клинкера алит Ca3SiO5 и белит — Ca2SiO4 при растворении в воде диссоциируют на ионы кальция и силикатные ионы; трехкаль-циевый алюминат Са3(AlО3)2 на ионы кальция и алюминатные ионы; четырехкальциевый алюмоферрит Са3(AlО3)2·Ca(FeO2)2 на кальций-ионы, алюминатные и ферритные ионы. Молекулы воды с поверхности кристалла соли вытягивают в первую очередь положительно заряженные ионы, что ускоряет выпадение из ионной (координационной) решетки отрицательно заряженных ионов, т. е. . происходит распад системы ионов на составляющие. Аналогичные распады систем в водной среде происходят при использовании других вяжущих гипсовых, магнезиальных, глиноземистого цемента и других, в основе строения микроструктуры которых находятся ионные кристаллические решетки. Характерным отличием шлако-щелочных цементов от других, например кальциевых, соединений является их несравненно большая растворимость. В условиях образовавшегося щелочного раствора проходит самопроизвольное диспергирование

частиц шлака. Продуктами

деструкции алюмосиликатной составляющей шлака

 

 

 

 

1 Согласно закону Кулона: F =

e1 e2

, где F сила взаимодействия между зарядами e1 и е2; r

ε r 2

 

 

расстояние между центрами ионов; ε диэлектрическая проницаемость растворителя (для воды при 20°С величина ε = 80).

245

становятся частицы (SiO4)4+ и (AlО4)3- и ионы Са2+, Са(ОН)+ или Са(H2О)·(ОН)-. Такой процесс деструкции происходит за счет интенсификации разрыхления щелочью алюмокремниевого ингредиента шлака: Si–O–Si+OH=Si–OH+Si+O.

Таким образом на первой стадии происходит разрушение молекулярной структуры частиц твердых веществ, разупорядочение движения молекул, распад систем ионов, деструкция дисперсий (например, шлаковых в щелочной среде).

Деструкция вяжущего вещества, как отмечалось выше, продолжается в течение длительного периода времени, что зависит от размера частиц, концентрации твердой фазы в жидкой среде, температуры, значения рН среды, давления и других факторов. Чем сложнее твердые частицы вяжущего вещества по своему агрегативному составу, тем более сложными являются процессы деструкции с переходом системы в метастабильное состояние с резким увеличением дисперсной фазы в единице ее объема.

Вторая стадия процесса отвердевания вяжущих веществ выражается в упорядочении частично или полностью разрушенной системы, с переходом ее из жидкого состояния в другое, более агрегатно-устойчивое твердое состояние. Основным сложным меха- низмом перехода из метастабильного состояния раствора в упорядоченное являются ассоциации молекул, ионные реакции, кристаллизация как в процессе химических реакций, так и через пересыщение раствора.

Находящиеся в растворе пары ионов соединяются в молекулы, которые оказываются достаточно устойчивыми к диссоциации. Гомогенные и гетерогенные реакции становятся необратимыми с образованием новых, сравнительно стабильных соединений (твердых веществ). Часть новых образующихся соединений нерастворима в воде, ассоциации их молекул соединяются в более крупные скопления и выпадают в кристаллический или аморфный осадок. При благоприятных условиях выпадение нерастворимого осадка может продолжаться до тех пор, пока не израсходуются все взаимодействующие между собой ионы. Кроме нерастворимых химических новообразований, в результате ионных реакций могут выделяться растворимые соли или основания, и тогда они накапливаются в растворе до стадии насыщения.

Кристаллы и кристаллогидраты выделяются не только в результате химических реакций, но и в связи с пересыщением растворов, в которых они становятся менее растворимыми, чем исходные вяжущие вещества. Сначала в растворе выделяются микрозародыши, ко- торые в последующий период самопроизвольно укрупняются до размеров кристалликов. Одновременно могут действовать и другие факторы, способствующие кристаллизации из пересыщенных растворов: испарение воды, присутствие добавок понизителей рас- творимости, понижение температуры и т. п. Они благоприятствуют переходу жидкой метастабильной системы в более устойчивые кристаллические и относительно устойчивые (гелеобразные) фазы. Образование кристаллов из ионов, атомов или молекул всегда сопровождается выделением энергии кристаллических решеток. От ее суммарной величины зависят упругость формирующихся твердых кристаллов и агрегатов, а также прочность, твердость, растворимость и другие свойства. Та часть веществ, которая не успевает перейти в стабильное кристаллическое состояние и остается в виде ге-левой фазы, обладает большой внутренней энергией и меньшей устойчивостью структуры.

По этой кинетической схеме твердеют портландцемент, глиноземистый цемент, гипсовые и другие неорганические вяжущие вещества. Процессы их отвердевания в результате взаимодействия с водой определяют обычно как гидролиз, т. е. как реакцию обменного разложения водой, и как гидратацию, т. е. взаимодействие ионов с полярными молекулами воды, с появлением новых гидратных соединений.

При твердении портландцемента (клинкерной его части) алит вследствие гидролиза выделяет два гидратных соединения кислую соль и основание, а именно: Ca3SiO5 + 5H2О = Ca2H8SiO8 + Ca(OH)2; в растворе, кроме того, накапливаются гидроксильные ионы ОН-.

246

Белит, имеющий сравнительно малую внутреннюю энергию и отличающийся поэтому слабой диссоциацией молекул в водной среде, в результате присоединения нескольких молекул воды образует Ca2H8SiO8.

Трехкальциевый алюминат (Са3Al2О6) в процессе взаимодействия с водой образует осадок в виде кубических кристаллов кислой соли Са3Н12Al2O12. Это новообразование имеет обратимый характер, так как может сравнительно легко растворяться с расщеплением молекул кислой соли на отдельные ионы и с выделением больших количеств теплоты (по сравнению с теплотой, выделяемой при диссоциации других минералов клинкера).

Гидратные новообразования возникают и при взаимодействии четвертого компонента клинкера четырехкальциевого алюмо-феррита (Ca4Al2Fe2O10) с водой. Под влиянием гидролиза образуются кислые соли Са3Н12Al2O12·СаН2Fe2О3. В среде со значительным содержанием в ней основания Са(ОН)2 кислая соль (однокальциевый гидроферрит CaH2Fe2O5) вступает в химическую реакцию: CaH2Fe2O5 + 3Са(ОН)2 + 10Н2О с образованием нового гидратного соединения Ca4H28Fe2O21.

Присутствующий в водной среде сульфат кальция (Са2+ + SO42-), добавлявшийся в виде гипса при помоле портландцементного клинкера, участвует в формировании комплексного соединения гид-росульфоалюмината кальция (эттрингита), имеющего ярко выраженную форму крупных кристаллогидратов. Более удобной и общепринятой формулой записи состава эттрингита является: 3СаО·Аl2О3·3CaSO4·31Н2О.

Врезультате процесса гидролиза и гидратации портландцементного клинкера в системе формируются новые кристаллические, а также аморфизированные гидратные фазы. Особенно широко представлены в системе гидросиликаты кальция. Их высокодисперсные субмикрокристаллы волокнистой формы размером менее 1·10-8 м в ранние и до 1·10-7 м в более поздние сроки твердения составляют гелевую часть отвердевшего вяжущего вещества цементного камня. Только относительно крупные микрокристаллы гидрооксида кальция, гидроалюминатов и эттрингита достигают значительных размеров (более 0,5 мкм). Их можно наблюдать в микроскопе (с увеличением до 2000), тогда как частицы гидросиликатов обнаруживаются лишь с помощью электронного микроскопа и рентгеноструктурного анализа.

Таким образом, к завершающему этапу второй стадии твердения портландцементного теста формируется кристаллическая (сросшиеся между собой кристаллогидраты) и гелевая части цементного камня. Последний обладает определенной микроструктурой, составом и свойствами. Сростки кристаллогидратов в этой формирующейся микроструктуре образуют либо непрерывную пространственную сетку как остов цементного камня, либо они более или менее равномерно распределены в гелевой части. Гидросиликаты занимают в ней примерно 70—75% общего объема. Кроме того, она имеет тончайшие гелевые поры диаметром (15—30) ·10-10 м, контракционные от 0,01 до 0,1 мкм, возникшие вследствие усадки при образовании новых химических соединений, капиллярные размером от 0,1—0,5 до 50 мкм и более, оставшиеся от испарения свободной воды, физических усадочных явлений.

Всформировавшемся цементном камне, даже после большого срока его твердения, сохраняются не полностью гидратированные частицы клинкера, рассредоточенные среди гидратных новообразований. Нормальному процессу электролитической диссоциации этих частиц клинкера могли помешать более крупный размер частиц, ограниченное количество воды, введенной в тесто: чем меньше жидкой среды, тем труднее проходит диссоциация; экранирующие твердые оболочки из новообразований, осадившихся на поверхности частиц цемента, что затруднило диффузию воды к новым поверхностям частиц цемента, и т. п.

Вупрочнении цементного камня с уплотнением его пор может участвовать углекислый

газ: Са(ОН)3 + СО2 = СаСО3 + H2О. Образующаяся соль углекислого кальция практически нерастворима в воде, а ее кристаллы заполняют поры, особенно в поверхностных слоях

247

цементного камня, так как в процессе карбонизации объем твердой фазы увеличивается на

10—11%.

Под влиянием процессов отвердевания цементного теста на второй стадии исходное количество воды уменьшается, тогда как масса твердой фазы возрастает за счет гидратных новообразований. Часть воды переходит в кристаллизационную, другая в цеолитную, а некоторая доля воды находится в свободном (объемном) и пленочном состояниях.

Аналогичные явления обменных реакций с образованием новых гидратных соединений происходят также при взаимодействии с водой или водным раствором соли других неорганических веществ. Схема процессов на второй стадии их отвердевания остается прежней: формирование кристаллогидратов в условиях насыщенных растворов с выделением: при глиноземистом цементе Са3Н12Al2О12, чему всегда способствует повышенный водородный показатель среды рН; при извести Са(ОН)2; при гипсовых

вяжущих веществах — CaSO4·2H2О; при магнезиальных вяжущих веществах

3MgO·MgCl2·H2О. При шлакощелочном цементе вещественный и количественный состав продуктов кристаллизации определяется в основном минералогическим и химическим составом шлаков, природой щелочного компонента, условиями твердения. Наличие по- стоянной щелочной среды способствует, как отмечает В.Д. Глуховский, формированию тоберморитоподобных гидросиликатов кальция, а также соединений типа гидрогранатов, смешанных новообразований щелочно-щелочноземельного состава. В числе этих со- единений: 5СаО·6SiO2·nН2О; 6СаО·6SiO2·H2О (ксонотлит), 3СаО·Аl2О3·1,5SiO2·3H2О (гидрогранат); (Na, Ca)SiO2·nH2О (натриево-кальциевый гидросиликат); Na2O·А12О3·4SiO2·2H2О (анальцим) и др. Эти продукты обеспечивают достаточную стабильность затвердевшего камня и их низкую растворимость в водной среде.

В некотором количестве сохраняются и метастабильные фазы, не успевая за период отвердевания перейти в устойчивое кристаллическое состояние, что аналогично формированию микроструктуры портландцементного камня.

Таким образом можно заключить, что при объединении каждого неорганического вяжущего вещества с водой (реже с водными растворами солей) образуется тесто (паста), которое в конце второй стадии твердения переходит из вязко-пластичного в камневидное состояние. В нем к этому времени становится упорядоченной мик- роструктура за счет сформировавшейся кристаллической фазы, но сохраняется и другая гелевая часть, которая в заданных условиях также в достаточной мере устойчива и находится в твердообразном состоянии, но отвердевшее камневидное вещество еще в течение длительного времени (иногда многие годы) способно при благоприятных условиях к спонтанному дальнейшему упорядочению микроструктуры с ее упрочнением и стабилизацией. Возможен, однако, и обратный эффект разупрочнение в тех случаях, когда вследствие рекристаллизации или появления новых микрообъемов кристаллической фазы, возникающей из резервов ранее не прореагировавшего вяжущего вещества или гелевой части, образуются внутренние напряжения и локальные микроразрушения структуры материала.

248

9.3. ЗАПОЛНЯЮЩИЕ КОМПОНЕНТЫ В КОНГЛОМЕРАТАХ И ДОБАВКИ, ВВОДИМЫЕ В СМЕСИ

Заполнители (и наполнители) классифицируют по составу неорганические и органические, происхождению природные и искусственные, внешнему виду и форме частиц зернистые (крупно-, средне- и мелкозернистые), порошкообразные, фиброволокнистые, стержневые и др., средней плотности тяжелые и легкие, плотные и пористые, по взаимодействию с вяжущим веществом высокоактивные, активные, малоактивные и неактивные.

Заполнители (и наполнители) получают либо непосредственно из пород, либо с помощью химической переработки сырья. Их изготовляют в производственных условиях в результате выполнения определенных технологических операций: измельчение и помол сырья, фракционирование, промывка, обезвоживание, сушка и, при необходимости, нагревание, обжиг и вспучивание, обогащение, химическая и физико-химическая обработка и др. Дробление грубозернистых заполнителей (щебня, гравия, древесной дробленки и др.) производят с целью получения крупных частиц необходимых размеров, повышенной однородности и плотности. Помол мелкозернистых материалов применяют для повышения их активности, увеличения удельной и суммарной поверхности минеральных порошкообразных продуктов. В табл. 9.3 приведены вид и степень измельчения материала.

Таблица 9.3. Степень измельчения материала при дроблении

Вид

измельчения

Средний размер, мм

 

Степень

кусков

до

зерен или частиц

после

измельчения

материала

измельчения D

 

измельчения, d

 

D/d

 

 

 

 

Крупное дробление

300—1500

 

100—300

 

2—6

Среднее дробление

100—300

 

10—50

 

5—10

Мелкое дробление

 

 

20—50

 

2—10

 

10—50

Тонкое измельчение

 

 

Сверхтонкое

2—10

 

0,075—2

 

50—100

0,075—2

 

0,0001—0,075

 

100

измельчение

 

 

 

 

 

 

 

Материалы измельчают в дробилках, камнекрошилках и мельницах тонкого и сверхтонкого измельчения. Для повышения насыпной плотности (уменьшения пустотности) заполнителей их разделяют на фракции (фракционируют) с разной крупностью зерен, а из получаемых фракций составляют нужные смеси заполнителей. Фракционирование часто совмещают с измельчением. Порошкообразные наполнители фракционируют сепарацией, причем получаемые крупные частицы доизмельчаются повторно. Одним из важных свойств порошкообразного наполнителя служит плотность, зависимая от зернового состава. Степень дисперсности порошкообразного наполнителя ограничивается. При очень высокой дисперсности частицы спонтанно агрегируются (слипаются) с уменьшением удельной поверхности агрегатов, комкованием и повышением неоднородности. Необходимую степень дисперсности порошкообразного наполнителя определяют экспериментально, учитывая, что при длительном хранении высокодисперсного наполнителя происходит частичная потеря его активности вследствие адсорбции и хемосорбции веществ из окружающей среды.

Важная роль отводится промывке водой зернистых заполнителей (песка, гравия, щебня) для освобождения от загрязняющих глинистых, илистых, пылевидных и других примесей. Эти примеси ухудшают качество ИСК, уменьшают их однородность и прочность, препятствуют сцеплению заполнителя с вяжущим веществом. Промывку заполнителей водой часто совмещают с их фракционированием.

249

После промывки заполнитель обезвоживают механическим способом (отстаиванием, фильтрацией, отжимом, грохочением, центрифугированием, гидроклассификацией) или искусственной сушкой в карьерах и на заводах с помощью различных источников теплоты (газом, инфракрасными лучами, электрическим током высокой частоты и др.). Введение гидрофобных (водоотталкивающих) поверхностно-активных веществ при промывке способствует соскальзыванию с поверхности частиц водяных капель. В некоторых случаях заполнители промывают частью воды затворения, например при приготовлении бетонной смеси, и тогда загрязняющие примеси, входящие в водную суспензию, выполняют функции высокодисперсных наполнителей.

Очищение заполнителей возможно также сухими способами с помощью плоских вибрационных или барабанных грохотов, пульсирующих обеспыливателей, методом рентгеносепарации и др.

Взимнее время заполнители не только сушат, но нередко еще нагревают до определенной температуры. Обычно это осуществляется в одном аппарате сушильном барабане, на колосниковой решетке и др. Нагревают заполнители для придания им необходимого ка- чества, например лучшей смешиваемости с вяжущим веществом. Легкие заполнители получают из горных пород (пемзы, туфов и др.), но в большей мере путем обжига вспучивающихся глин, перли-тов, вермикулита, обсидиана, шунгита и других видов природного сырья, а также из побочных продуктов шлаков, зол. С целью придания заполнителям большей однородности по зерновому составу или плотности их обогащают путем отделения механически слабых и неморозостойких включений.

Впроцессе подготовки некоторые заполнители подвергают химической и физико- химической обработке с целью повышения их активности при взаимодействии с другими компонентами ИСК, создания более благоприятных условий их производства, повышения плотности и прочности конгломерата и др. При такой обработке к заполнителям добавляют специальные вещества. Так, при производстве арболита и фибролита в органические заполнители (древесную стружку, древесную дробленку, льняную и конопляную костру и т. п.) вводят добавки минерализаторов для повышения химической стойкости смешиваемых с заполнителями минеральных вяжущих веществ. При производстве асфальтобетона и дегтебетона в минеральные наполнители вводят гидрофовизирующие добавки с целью повышения адгезии органического вяжущего вещества к минеральным заполнителям.

Химическую и физико-химическую обработку заполнителей иногда совмещают с механической обработкой, например помолом. При этом с поверхности зерен заполнителя удаляются недостаточно активные адсорбированные слои, благодаря чему поверхность обновляется, становится более активной при взаимодействии с вяжущими веществами.

При транспортировании принимают меры против загрязнения промытых и непромытых заполнителей, увлажнения высушенных и охлаждения нагретых заполнителей, поэтому транспортирование оказывает как бы некоторое косвенное влияние на структурообразование ИСК.

Важное значение для бесперебойного, устойчивого производства имеет хранение заполнителей и наполнителей в бункерах и других хранилищах. От правильного хранения зависят однородность этих материалов, а следовательно, структура и качество ИСК. При хранении заполнителей и особенно мелкофракционных наполнителей, например, в бункерах иногда образуются своды и зависания, вследствие чего самопроизвольно прекращается их истечение из отверстия. Это ухудшает условия дозировки заполнителей, вызывает простои оборудования, понижает производительность труда, отражается на структуре и качестве ИСК. Образование сводов и зависаний является сложным процессом, зависящим от многих факторов. Для их предотвращения применяют обрушающие устройства, которые устанавливают в бункерах или снаружи.

250

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]