Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

STROITEL_NOE_MATERIALOVEDENIE_RYB_EV

.pdf
Скачиваний:
91
Добавлен:
01.05.2015
Размер:
7.29 Mб
Скачать

8.8. ЗАЩИТА ПРИРОДНОГО КАМНЯ В КОНСТРУКЦИЯХ

Процесс постепенного разрушения каменных материалов в конструкциях зданий и сооружений можно предотвратить или затормозить с помощью различных конструктивных и химических методов защиты, способствующих снижению воздействия увлажнения, нагревания, замерзания, солнечной радиации и т. п.

Конструктивные методы выражаются в устройстве гладких или полированных поверхностей материалов, не способных задерживать дождевые и талые воды и пропускать агрессивные среды внутрь каменного материала.

Химические меры защиты заключаются в флюатировании камня, т. е. обработке его водными растворами солей кремнефтористо-водородной кислоты. Эти соли (флюаты) вступают в химические соединения с растворимыми компонентами камня с образованием фтористых солей Ca и Mg и кремнезема, нерастворимых в воде, которые уплотняют поверхность камня и делают ее недоступной для агрессивных сред. Так, например, при обработке известняковых пород кремнефтористым магнием образуется кремнезем и формируются фтористые соли:

2CaCO3 + MgSiF6 = 2CaF2 + MgF2 + 2CO2 + SiO2 .

известняк флюат нерастворимые соли

Фтористые соли, образовавшиеся при флюатировании, уплотняют поверхностные слои камня и повышают устойчивость его против выветривания.

Химические меры обработки особенно эффективны для карбонатных пород. Кислые породы перед флюатированием пропитывают раствором известковой соли, которая впоследствии образует с флюатом защитный слой из нерастворимых в воде соединений.

Кроме флюатирования поверхность камня может обрабатываться добавками оксида свинца или железистых соединений, увеличивающих погодоустойчивость поверхности. Для аналогичных целей могут использоваться водные растворы и эмульсии, полимерные вещества и водополимерные дисперсии. Так, например, для получения поверхностного уплотнения камня и гидрофобизации его поверхности и пор применяют кремнийорганические соединения: метилсиликонат натрия ГКЖ-94, этилсиликонат натрия ГКЖ-10 и др., а также водный раствор мочевиноформальдегидной смолы. Известны и другие способы защиты камня от выветривания и разрушения, которые продлевают эксплуатационный срок службы каменных материалов и изделий без заметных выцветов и потускнения поверхности или других следов химического выветривания.

Возникающие аморфные или кристаллические новообразования оказываются практически нерастворимыми в воде. Отлагаясь в порах камня, они уменьшают пористость и смачиваемость его поверхности, скорость капиллярного подсоса воды или грязи. Конструктивные и химические мероприятия, применяемые в совокупности, приводят к увеличению долговечности природного камня в конструкциях зданий и сооружений.

211

Б. ИСКУССТВЕННЫЕ СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

В отличие от природных искусственные строительные материалы составляют продукцию заводского производства, получаемую чаще всего с применением химической технологии. Переработке подвергают природное минеральное сырье и. разнообразные побочные продукты, в том числе промышленности строительных материалов и изделий. В соответствии с классификацией ИСК (см. рис. 1.1) вырабатывают материалы двух типов: безобжиговые и обжиговые. Из безобжиговых целесообразно отдельно выделять группу силикатных материалов, получаемых с помощью автоклавной технологии.

1. БЕЗОБЖИГОВЫЕ ИСКУССТВЕННЫЕ КОНГЛОМЕРАТЫ

Безобжиговые строительные конгломераты слагаются из двух взаимосвязанных структурных элементов вяжущего вещества, выполняющего функции цементирующего матричного компонента, и заполняющего компонента. Вяжущее вещество, в свою очередь, слагается из двух химически и физико-химически контактируемых ингредиентов жидкой, дисперсионной среды (с,%) и твердой вы- сокодисперсной фазы (ф,%). Совместно они образуют в конгломерате гетерогенную дисперсную систему, выполняющую, как уже отмечено, функцию матричного вещества, а количественно выражаемого как (с+ф, %). Остающаяся часть массы до 100 %, т. е. [100 — (с+ф)], приходится на заполняющий компонент конгломерата. Она и по массе, и по объему значительно больше вяжущего вещества. Однако матрица, являясь основой конгломерата, обусловливает его важнейшие свойства и, как правило, его наименование, а именно: ИСК на основе неорганических вяжущих веществ; ИСК на основе органических вяжущих веществ; ИСК на основе полимерных связующих веществ; ИСК на основе комплексных вяжущих веществ. В этой последовательности они и рассматриваются.

212

Глава 9

Строительные конгломераты на основе неорганических вяжущих веществ

К этой важнейшей для строительства группы ИСК относятся бетоны разной плотности, железобетон, строительный раствор, гипсовые и гипсобетонные изделия, изделия на основе магнезиальных вяжущих веществ, асбестоцементные и силикатные изделия авто- клавного твердения. В каждом из них имеется своя матричная часть и свой заполняющий компонент. Но несмотря на своеобразие каждого ИСК на них при оптимальных структурах распространяются общие объективные закономерности.

9.1. ЦЕМЕНТНЫЙ КАМЕНЬ КАК МАТРИЧНАЯ ЧАСТЬ В КОНГЛОМЕРАТАХ И ИСХОДНЫЕ КОМПОНЕНТЫ

Матричная часть как гетерогенная дисперсная система в безобжиговых конгломератах образуется из жидкой дисперсионной среды, в качестве которой наибольшим применением пользуются вода и некоторые водные растворы, и дисперсной фазы высокотонкого помола минерального вещества как разновидности неорганических вяжущих материалов.

213

9.1.1. ВОДА И ВОДНЫЕ РАСТВОРЫ

Главнейшим ингредиентом безобжиговых ИСК на основе неорганических вяжущих веществ является вода. В начальной стадии технологического процесса при изготовлении конгломератной смеси она выполняет функцию пластифицирующего компонента, но по мере уплотнения и формования смеси и конгломерата с ее активнейшим участием проходит структурообразование. Этот природный минерал (см. 8.2), находясь в жидком состоянии, принимает различный характер связи с вяжущим веществом, использованным в искусственном конгломерате. Подобно тому как вода в земной коре имеет три основных типа связи с другими породообразующими минералами конституционную, кристаллизационную и адсорбционную, в искусственных конгломератах она также только частично остается в свободном состоянии. В большей мере она внедряется в кристаллические решетки новых формирующихся фаз, входит в новые химические соединения и гелеобразования. В конгломератных смесях и отформованных из них изделиях вода продолжает оставаться активной дисперсионной средой. В ней, как жидкой среде, протекают растворение, диссоциация, коагуляция, пептизация, седиментация и другие физико-химические процессы, характерные для стадий диспергирования и конденсации отвердевающих систем (см. 2.2.5). Вода может входить в межплоскостные емкости и задерживаться в них, что особенно характерно для силикатов со слоистой структурой. Она может проникать в поры и различного рода пустоты, в том числе ультрамикроскопические, удерживаясь более прочно' чем вода адсорбционная. Вода подвержена электролитической диссоциации (точнее, электролитической ионизации) в соответствии с уравнением 2Н2О = OH3+ + OH- и распадом ее молекул на ионы H1+ и OH1- с появлением в ней нестойких ионов оксония H3O1+. В результате непрерывно изменяется активность водной среды по отношению к твердой дисперсной фазе, особенно к минеральному вяжущему веществу. Вода становится раствором электролитов и поэтому ее свойства изменяются пропорционально молекулярной концентрации растворенного вещества. Кроме того, вода реагирует на изменение внешних условий (температуры, давления, магнитных электрических полей и др.), под влиянием которых она изменяет |вои первоначальные свойства. Нередко в смеси дополнительно вносятся соли как истинные или потенциальные электролиты, что также благоприятствует повышению активности водного раствора по мере увеличения степени их диссоциации. Вносимая соль (иногда кислота) имеет функциональное назначение повысить активность к растворению вяжущих веществ и к химической реакции с ними гидролизу и гидратации с кристаллизацией гидратных новообразований.

Активизация воды с повышением ее энтропии может осуществляться не только введением определенных доз электролитов. Другие методы, подобно солям, могут влиять на структуру воды с внесением в нее новых ионов, образованием дополнительных мономерных молекул за счет разрыва водородных связей и т. п. В частности, к таким методам могут быть отнесены: обработка воды электрическим током строго дозированной величины (из научных работ В.М. Рудакова); магнитная обработка воды; облучение рентгеновскими лучами с образованием свободного гидроксила OH и водородного атома H (не ионов!) по реакции Н2О = Н + ОН; использование радиоактивных изотопов и др.

Учитывая переменные внутренние и внешние условия, в которых выполняет свои функции вода как компонент конгломератной смеси, можно отметить, что только в самый начальный момент вода в системе остается нейтральной. Затем она становится водным раствором. И тем не менее к воде всегда предъявляются определенные технические требования (ГОСТ 23732-79), которых строго придерживаются в производстве бетонов, строительных растворов и других ИСК.

Вода не должна содержать примеси, препятствующие протеканию химических и физико- химических процессов, в которых она принимает непосредственное участие как активный компонент конгломератной (чаще всего бетонной) смеси. К таким примесям относятся:

214

органические вещества и среди них сахар и другие углеводы, фенолы, нефтепродукты, масла, жиры и др.; взвешенные частицы глины, пыли, гумуса и т. п.; растворимые соли кислот, сульфат-ионы, хлор-ионы, другие растворимые вещества. В природной воде допускается не более 5000 мг/л минеральных солей, в том числе сульфатов не более 2700 мг/л (в пересчете на SO3). Не допускается применять болотную и сточную (бытовую и промышленную) воду без ее предварительной очистки и последующего тщательного контроля, а также морскую воду в целях предотвращения коррозии металла арматуры и образования цементных «бацилл».

Наиболее полно техническим требованиям удовлетворяет вода питьевая (водопроводная) и речная. Однако если река судоходная, то не рекомендуется использовать воду верхних горизонтов. Одним из положительных показателей качества воды служит водородный показатель pH, который, как известно, характеризует концентрацию (активность) ионов гидроксония (для простоты их обычно называют ионами водорода). Он численно равен отрицательному десятичному логарифму концентрации (активности) ионов гидроксония (OH3+), выраженной в моль/л, т. е. pH = -lg(OH3). Водородный показатель pH для воды, используемой в составе бетона, а также для поливки уложенного бетона в сухое время года, должен быть в пределах от 4 до 12,5. Это соответствует воде, дающей слабокислую либо слабощелочную реакции, либо самое лучшее, нейтральную реакцию (pH = 7). Для измерения водородного показателя на практике используют прецизионные инструменты

— pH-метры.

215

9.1.2. НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Неорганическими вяжущими веществами называются порошкообразные минеральные материалы, которые при смешивании с водой или водными растворами некоторых солей образуют пластическую массу (тесто), способную со временем твердеть до камневидного состояния. Большую группу неорганических вяжущих веществ составляют воздушные и гидравлические.

Воздушные вяжущие вещества способны в тестообразном состоянии твердеть и длительно сохранять свою прочность только на воздухе, вне контакта с водой. Их используют в условиях, не подвергающихся воздействию водной среды. К таким вяжущим веществам относятся: строительная воздушная известь, гашеная (пушонка) и молотая негашеная (кипелка) известь, гипсовые и магнезиальные вещества, а также растворимое или жидкое стекло, которое, как исключение из общего числа вяжущих, не относится к порошкообразным материалам.

Гидравлические вяжущие вещества способны в тестообразном состоянии твердеть и длительное время сохранять прочность не только на воздухе, но и в воде, увеличивая с течением времени прочность отвердевшего теста (камня). Поэтому, в отличие от воздуш- ных,- они могут применяться в наземных, подземных, гидротехнических и других сооружениях, подверженных воздействию водной среды. К таким вяжущим относятся портландцемент, глиноземистый цемент, пуццолановые и шлаковые смешанные цементы, ряд специальных цементов, а также гидравлическая известь. К ним примыкают еще и вяжущие вещества автоклавного твердения.

Производство неорганических вяжущих веществ основано на химической переработке сырья. Основной сырьевой базой служат горные породы и сходные с ними по составу побочные продукты промышленности. Из горных пород используют: карбонатные известняк, мел, известковые туфы, ракушечник, мрамор, доломиты, доломитизированные известняки, магнезит; сульфатные гипс и ангидрит; мергелистые известняковые мергели; алюмосиликатные нефелин, глины, глинистые сланцы; высокоглиноземистое сырье бокситы, корунды и др.; кремнеземистые вулканический пепел (пуццолан), трассы, диатомит, трепел, опоку, кварцевый песок. Из побочных продуктов в качестве сырья применяют в цементной промышленности шлаки металлургические, особенно первичных процессов доменного производства, а также передельных процессов (мартеновские); шлаки цветной металлургии, топливные и др.; золы, обычно кислые. При использовании побочных продуктов учитывают их химический состав, так как по составу они подразделяются на основные и кислые. У основных шлаков модуль основности M0 > 1, у кислых M0 < 1:

M 0 = %CaO + MgO , (9.1)

%SiO2 + Al2O3

где в числителе суммарное количество (в процентах по массе) основных оксидов; в знаменателето же, но в отношении кислых оксидов (иногда сюда же прибавляют еще оксид железа Fe2O3). Необходимые количественные данные получают путем выполнения

химического анализа сырья.

 

 

Побочные (попутные)

продукты оцениваются также

по модулю

активности:

M

акт

=

Al2O3

. Однако

исследования и практика

показали на

отсутствие

 

 

 

SiO2

 

 

 

 

 

 

 

 

 

закономерности между величинами указанных двух модулей и реальными свойствами материалов [12]. Поэтому изыскивались иные модули Тетмайера, Ле-Шателье, Кюля, Юнга, Кинда и др. Исследования показали несомненную полезность коэффициента основности, предложенного П.И. Боженовым и приведенного выше. По мере роста M0 > 1 вяжущие свойства металлургических шлаков заметно повышались.

216

Сырье бывает одно- и многокомпонентным. При многокомпонентном сырье более однородной смесь получается при увеличении степени дисперсности ее компонентов раздельным или одновременным доизмельчением; при этом возрастает и общая (химическая и энергетическая) активность продукта домола, тем более, если в до- измельчаемую смесь были дополнительно внесены еще необходимые ингредиенты.

Принципиальная схема технологии изготовления минеральных вяжущих веществ состоит из следующих основных операций: подготовка исходных компонентов сырья; дозирование; придание сырью удобообжигаемого состояния с учетом конструкции печи и других производственных факторов; обжиг; помол продукта обжига в смеси с добавками или без добавок. Центральное место в технологии занимает обжиг, при котором сырье теряет свободную воду, дегидратируется, термически диссоциирует. Обжиг осуществляется в печах или специальных аппаратах (например, при варке гипса, растворимого стекла). Наиболее распространенными являются вращающиеся печи, особенно при производстве портландцемента, глиноземистого цемента, извести и некоторых других вяжущих материалов.

При определенных термических режимах сырье или сырьевая смесь претерпевает изменения в химическом составе и структуре. При повышенных температурах происходят реакции в твердом состоянии. Атомы или атомные группы в кристаллической решетке нагреваемого вещества начинают колебаться в такой степени, что молекулы получают избыточную энергию (энергию активации). Часть активных молекул может сталкиваться

иобмениваться местами с атомами и молекулами другого реагирующего вещества, обра- зуя новые соединения. Эти реакции в твердой фазе за счет энергии активации особенно характерны при получении воздушной и гидравлической извести, а также роман-цемента, так как температура обжига сырья не доводится до уровня спекания с появлением жидкой фазы. Как отмечалось в теоретической части (см. гл. 2), большей реакционной способностью обладают аморфные вещества, например, трепел активнее кварцевого песка при одном и том же их химическом составе. При температурах спекания, когда обжигается сырье для получения портландцементного клинкера, образуется жидкая фаза, которая ускоряет химические реакции между твердыми веществами, начинающиеся значительно раньше этой температуры. Продукт обжига приобретает новое качество, отличное от качества сырья или его компонентов. Оно выражается в появлении вяжущих свойств у продукта обжига после затворения его водой или, реже, водным раствором некоторых солей. Чтобы полнее и быстрее проявилась потенциальная вяжущая способность продукта обжига, необходимо всемерно увеличивать поверхность контакта на границе раздела фаз «твердое жидкое». Это достигается путем тонкого измельчения (помола) продукта обжига. Чем выше степень дисперсности порошкообразного продукта, больше его удельная поверхность, тем полнее и быстрее, при прочих соответственных условиях, проявляется потенциальная энергия. Для изменения некоторых качественных характеристик вяжущего вещества нередко при помоле вводят добавки, например гипс в портландцемент, известь в ангидритовый цемент и т. п.

Приготовление вяжущих веществ часто связано с использованием наполнителя тонкоизмельченных кварцевого песка, известняка, доломита, андезита, диабаза, базальта, некоторых шлаков. В виде активных (гидравлических) минеральных добавок используют либо природные породы диатомит, трепел, опоку, трасс и другие, либо искусственные

нефелиновый шлам, цемянку, глиеж (горелые породы), золы или шлаки. В минеральные вяжущие вещества нередко вводят поверхностно-активные добавки: гидрофильные сульфитно-спиртовая барда (ССБ), сульфитно-дрожжевая бражка (СДБ)

игидрофобные мылонафт, асидол, омыленный пек, олеиновая кислота и др. Производство вяжущих веществ не обходится иногда и без применения в них ускорителей или замедлителей твердения. В качестве ускорителей (катализаторов) используют хлористый кальций, хлористый натрий, соляную кислоту, жидкое стекло, нитрит натрия и др., а в качестве замедлителей твердения (ингибиторов) — двуводный гипс, серную

217

кислоту, сернокислое железо, клеи, ССБ и СДБ (соли лигносульфоновых кислот) и др. Для улучшения формовочных свойств могут вводиться пластификаторы порошкообразные вроде глины, бентонита, трепела, диатомита, извести (оксида кальция) и др. или в виде жидкости типа ПАВ. В качестве интенсифицирующих добавок при помоле вяжущего ве- щества применяют антрацит и другие углеродистые добавки.

Направление химических и физико-химических процессов при производстве вяжущих веществ зависит от многих факторов и, в первую очередь, от состава сырья, однородности его компонентов, характера и количества примесей, структурных и текстурных осо- бенностей применяемых горных пород в качестве компонентов сырья, технологического и термического режимов. Ввиду многообразия этих факторов трудно выдержать строго постоянным состав и свойства готового продукта вяжущего вещества. Активным кор- ректированием состава сырьевой смеси с введением некоторых дополнительных ингредиентов, а также варьирования режимов при выполнении операций представляется возможным увеличивать однородность состава и качества вяжущего материала. Понятно, что приготовление вяжущих веществ всегда усложняется по мере перехода от однокомпонентного сырья к сырьевым смесям, состоящим из двух и более компонентов. Впрочем, понятие однокомпонентности тоже достаточно условно вследствие возможных примесей в природном сырье.

Принципиальная схема технологии вяжущих веществ нуждается в конкретизации специфических особенностей при изготовлении отдельных типов вяжущих материалов.

218

9.1.3. ВОЗДУШНЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА И ИХ ПРОИЗВОДСТВО

Гипсовые вяжущие материалы воздушные вещества, получаемые из гипсового камня или ангидрита. По своим технико-экономическим показателям они относятся к эффективным строительным материалам, что обусловлено огромными запасами природного сырья, относительно низким расходом топлива при их получении, короткими сроками схватывания и твердения. Весь технологический цикл изготовления изделий на основе гипсовых вяжущих веществ можно осуществлять в заводских условиях.

Подготовка сырья заключается в его тонком измельчении либо в грубом дроблении до размеров щебня или более крупных кусков (до 70—300 мм), что зависит от типа аппарата для последующей тепловой обработки. Основной операцией является обжиг сырья с целью частичной или полной его дегидратации. Он может быть низко- и высокотемпературным.

При низкотемпературной тепловой обработке сырья в аппаратах, сообщающихся с атмосферой (например, в открытых варочных котлах, сушильных барабанах, шахтных печах и др.), в которых температура поддерживается на уровне 110—180°С, продукт обжига становится полуводным гипсом CaSO4·0,5H2O. Эта разновидность продукта обжига называется гипсом β-модификации и при измельчении его в тончайший порошок образуется вяжущее вещество, называемое строительным гипсом (рис. 9.1).

При низкотемпературной тепловой обработке сырья в герметически закрытых аппаратах (пропарниках, автоклавах и др.), в которых температура поддерживается на уровне 95— 100°С, а давление пара повышенное, равное 0,15—0,3 МПа (в автоклавах до 0,6 МПа), продукт после частичной дегидратации также становится полугидратом CaSO4·0,5H2O, но другой, α-модификации (хорошо просушенного и охлажденного полугидрата). При измельчении в тончайший порошок образуется вяжущее вещество, называемое вы- сокопрочным гипсом. Тот же эффект получается при тепловой обработке (кипячении) сырья в водных растворах некоторых солей, например хлористых кальции и магнии.

Рис. 9.1. Схема производства строительного гипса с применением варочных котлов: 1 мостовой грейферный кран; 2 бункер гипсового камня; 3 лотковый питатель; 4 щековая дробилка; 5 — ленточные конвейеры; 6 бункер гипсового щебня; 7 — тарельчатый питатель; 8 — шахтная мельница; 9

сдвоенный циклон; 10 батарея циклонов; 11 вентилятор; 12 рукавные фильтры; 13 пылеосадительная камера; 14 шнеки; /5 — бункер сырого молотого гипса; 16 - камера томления; 17 гипсоварочный котел; 18 элеватор; 19 бункер готового гипса; 20 скребковый конвейер

Различие между обеими модификациями низкотемпературного гипса состоит - преимущественно в размере и характере кристаллов: кристаллы α-модификации крупные в виде длинных прозрачных игл или призматические, которые формировались в условиях капельножидкой водной среды, кристаллы β-модификации мелкие с нечетко выраженными гранями. Если первые кристаллы полностью обезвоживаются только при

219

температурах 200—210°С, то вторые достигают этого уже при температурах 170—180°С. В обоих случаях обезвоживания не наблюдается видимых изменений в кристаллических структурах. Обезвоженные полугидраты имеют ту же кристаллическую решетку, что и полугидрат. Для производства высокопрочного гипса требуется сырье (камень) первого сорта.

Качественные характеристики получаемых двух видов гипса не одинаковы по ряду показателей. Строительный гипс порошок белого цвета плотностью 2,2—2,5 г/см3. Его средняя плотность в рыхлом состоянии 800—1100 и в уплотненном 1250—1450 кг/м3. Он обладает высокой водопотребностью: для получения теста нормальной густоты необходимо 50—70% воды по массе, а удобоукладываемое тесто в производственных условиях требует до 60—80% воды от массы вяжущего вещества. По срокам схватывания гипс различают: быстросхватывающийся (начало через 2 мин, конец не позднее 15 мин), нормально-схватывающийся (начало через 6 мин, конец не позднее 30 мин), медленносхватывающийся (начало не ранее 20 мин, окончание схватывания не нормировано). По пределу прочности при сжатии через 1,5 ч после изготовления образцов имеется 12 марок от Г-1 до Г-25 (цифры обозначают минимально допустимый предел, МПа). Эта разновидность гипса имеет низкую водостойкость, при увлажнении он склонен к ползучести. При более тонком помоле продукта обжига из β-полугидрата сульфата кальция получают гипс формовочный, при использовании сырья повышенной чистоты медицинский гипс.

Высокопрочный гипс имеет плотность 2,72—2,75 г/см3, а его средняя плотность в тех же пределах, что и гипса строительного. Водопотребность для нормальной густоты теста

около 40—45%, т. е. более низкая, что вызвано его пониженной удельной поверхно- стью и повышенной крупностью кристаллов. Он обладает повышенной прочностью при сжатии (свыше 25—30 МПа), но не водостоек и имеет тенденцию к ползучести во влажном состоянии (1—3% влаги). Прочность при растяжении в 6—8 раз меньше, чем при сжатии образцов в сухом состоянии. В последние годы в нашей стране были проведены исследования (С.В. Мамбетшаев, А.А. Моров) по расширению сырьевой базы за счет снижения содержания требований к содержанию двугидрата кальция (вплоть до 3-го сорта) за счет улучшенной технологии со снижением до минимума остаточного и вто- ричного двугидрата и переводом их в β-модификацию гипса. Получается улучшенный высокопрочный гипс для изготовления гипсобетона, раствора, арболита и других изделий. Строительный и формовочный гипс с успехом используют при производстве перегородочных панелей, сухой штукатурки, гипсо-литных деталей, вентиляционных коробов, огнезащитных и звукопоглощающих изделий и др.

При температурах 450—750°С растворимый ангидрит переходит в нерастворимый, вследствие чего тесто из порошкообразного ангидрита и воды практически не твердеет. На его базе основано производство ангидритового цемента продукта обжига природного двуводного гипса при температуре 600—700°С с последующим тонким помолом с добавлением минеральных веществ. К таким добавкам относятся смесь сульфата и бисульфата натрия с медным купоросом, известь (2—5%), основной доменный шлак (10—15%) и др. В присутствии указанных добавок ангидрит взаимодействует с во- дой и приобретает способность схватываться и твердеть. Предел прочности при сжатии у ангидритового цемента составляет 10—20 МПа, начало схватывания наступает не ранее 30 мин, конец не позднее 24 ч.

Гипс высокообжиговый (экстрих-гипс) получают при обжиге гипсового сырья до температур 800—950°С, когда продукт обжига вновь приобретает свойства схватываться

итвердеть без каких-либо добавочных веществ. Эта «добавка» возникает в обжигаемом

сырье вследствие термической диссоциации сернокислого кальция (2CaSO4 2CaO + 2SO2 + O2) в виде свободного оксида кальция. Отдельные специалисты полагают, что вместо свободного оксида кальция имеется mCaSO4·nH2O. Тонко измельченный порошок

иявляется высокообжиговым гипсом (эстрих-гипсом). Начало схватывания теста из

220

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]