Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

STROITEL_NOE_MATERIALOVEDENIE_RYB_EV

.pdf
Скачиваний:
91
Добавлен:
01.05.2015
Размер:
7.29 Mб
Скачать

отметить, что поризованныи бетон при его изготовлении требует дополнительных трудозатрат и применяется реже.

291

9.4.4. ЯЧЕИСТЫЕ БЕТОНЫ

Широко используемая разновидность бетонов и растворов имеет своеобразную ячеистую структуру макропор, равномерно распределенных в объеме бетона и отделенных друг от друга тонкими и достаточно прочными перегородками (мембранами). Средняя плотность таких бетонов в высушенном состоянии колеблется в широких пределах: от 1200 и ниже 500 кг/м3. При средней плотности не более 500 кг/м3 их используют как теплоизоляцию, от 500 до 900 кг/м3 в качестве конструктивно- теплоизоляционного и от 900 до 1200 кг/м3 конструкционных материалов, обычно армированные металлической арматурой.

Другие свойства характеризуются следующими показателями: прочность 3—15 МПа, морозостойкость более 25 циклов, теплопроводность 0,08—0,25 Вт/(м·К), усадка 0,2—0,6 мм/м. Стены из ячеистых блоков являются наиболее экономически эффектив- ными по сравнению с другими ограждающими конструкциями железобетонными трехслойными панелями с минеральным утеплителем, панелями из керамзитобетона, кирпичными стенами и др. Эти стены однослойные без дополнительного утеплителя, экологически чистые и достаточно комфортные для проживания, особенно после облицовки их, например, силикатным кирпичом. У ячеистых, как и у поризованных, бетонов цементный камень в результате добавления в свежеприготовляемую массу добарки порообразователя оказывается насыщенным порами, в основном замкнутыми, ячеистыми. В отличие от поризованных производство ячеистых бетонов сопровождается более выраженным эффектом вспучивания исходной смеси.

Вспучивание любого вяжущего вещества, как неорганического, так и органического, чаще всего достигается под влиянием вводимых в смесь добавочных реагентов. В результате взаимодействия реагирующих веществ в смеси выделяется газ, например водород или кислород. Кроме химических методов поризация со вспучиванием может проходить механическим путем за счет образования в смеси устойчивой пены. В связи с этим ячеистые бетоны разделяют на газобетоны и пенобетоны.

Вместо портландцемента в ячеистом бетоне нередко используют известь, и тогда бетон именуют газосиликатом. При применении шлаковых вяжущих веществ получают газошлакобетон, гипса газогипс, смешанных вяжущих типа ГЦПВ, ГШЦПВ и др. — соответствующие им бетоны.

Газобетон и газосиликат. Преимущественное распространение в строительстве получили газобетоны. В качестве газообразователя используют тонкоизмельченный алюминиевый порошок (алюминиевую пудру ПАК-31). Вступая в химическую реакцию с гидроксидом кальция, он способствует выделению молекул водорода и соответствующей энергии химической связи образования из простых веществ:

3Са(ОН)2 + 2Аl + 6Н2О = 3СаО – Al2О3·6Н2О + 3Н2.

Выделяемый водород частично теряется при перемешивании компонентов газобетона (вяжущего, заполнителей), но большая его часть (до 70—85%), расширяясь, вспучивает цементное тесто. Ячеистое цементное тесто затвердевает, образуя высокопористую матричную часть этого конгломератного материала. Крупный заполнитель в нем отсутствует. Чтобы процесс вспучивания протекал интенсивнее, к портландцементу добавляют некоторое количество извести-пушонки, примерно 10% его массы. Быстрая укладка смеси в металлические формы приводит к тому, что процесс газообразования происходит в основном в период нахождения смеси в этих формах и продолжается примерно 15—20 мин. Важно, чтобы к моменту завершения процесса выделения водорода бетонная смесь загустела и смогла зафиксировать ячеистую структуру матричной части бетона.

Другим газообразователем вместо алюминиевой пудры может служить пергидроль, т. е. техническая перекись водорода. В щелочной среде цементного теста или цементного

292

раствора пергидроль разлагается с выделением молекул кислорода и соответствующей энергии химической связи: 2Н2О2 2Н2О + О2.

Молекулы кислорода вспучивают цементное тесто или строительный раствор в течение 7—10 мин, что позволяет получить газобетон средней плотностью до 1200 кг/м3. Исследования показали положительное влияние на образование макроструктуры ячеистых бетонов совместного применения пергидроля и хлорной извести. Повышению однородности распределения пористости способствует кратковременная (до 20 с) обработка компонентов ячеистобетонных смесей в электромагнитном поле, особенно в присутствии магнито-активных добавок, например пиритных огарков, ферросилиция.

Изделия из ячеистого бетона изготовляют по автоклавному и неавтоклавному способам производства. Технология может быть литьевой при высоких значениях фазового отношения (В/T = 0,45—0,60) или вибрационной, при которой применяют смеси с пониженным фазовым отношением (В/Т = 0,30—0,40).

Формы могут быть горизонтальными разборными с запариванием изделий в автоклавах в вертикальном положении, вертикальными в виде кассетных установок. На большинстве заводов в нашей стране нашел распространение литьевой способ технологии с реза- тельной и виброрезательной операцией. Для резательного способа производства характерно формование массива объемом 5—18 м3 с последующим его разрезанием в двух или трех плоскостях, автоклавной обработкой изделий.

Изготовляют газобетон в такой последовательности. Вяжущее, в качестве которого обычно применяют портландцемент, отвешивается на автоматических дозаторах и поступает в смеситель непрерывного действия. Сюда же загружают кремнеземистый компонент молотый кварцевый песок, в котором содержится не менее 80—85% кремнезема, тонкостью помола более 2000 см2/г, что в 10 раз и более выше удельной поверхности немолотого песка. На некоторых заводах по производству ячеистого бетона вместо молотого песка применяют маршалит, каракумские барханные пески, золу-унос ТЭС, молотые шлаки и др. При повышенной средней плотности газобетона (свыше 1000 кг/м3) допускается заменять часть молотого песка немолотым. Для регулирования срока схватывания цемента иногда в смеситель добавляют двуводный гипс. ' Сухие компоненты перемешивают с водой в течение 2—3 мин, в процессе перемешивания

вводят водную суспензию алюминиевой пудры или другого газообразователя, например пергидроль (водный 80%-ный раствор перекиси водорода). Готовую, хорошо перемешанную смесь выгружают из газобетоносмесителя в стальные формы, в которых происходит ее вспучивание при температуре 20—40°С. Формование изделий (плит, блоков и др.) может производиться на виброплощадках. Преимущественное распространение при перемешивании и формовании изделий получил способ вибрации (вибровспучивание), улучшающий ячеистую структуру газобетона и ее однородность. Вибрация позволяет снизить количество воды затворения, ускорить вспучивание и упрочнение по сравнению с безвибрационной, или литьевой, технологией, осуществляемой в неподвижных формах. Особенно эффективна вибрация при введении пластификатора или поверхностно-активных веществ, снижающих реологическое сопротивление смеси. Отечественный способ вибрационного перемешивания прогрессивнее зарубежного литьевого, так как кроме снижения В/Т позволяет вспучивать сырец за 5—10 мин (вместо 1—2 ч), набирать прочность сырца за 30—60 мин (вместо 120—360 мин); прочность получаемых изделий и их морозостойкость на 20—40% выше; уменьшены остаточная влажность и, следовательно, усадка изделий (на 20—30%).

Наибольшее распространение получил способ производства газобетона в вертикальных кассетных формах. Кассета имеет ряд разделительных вертикальных металлических стенок, установленных друг от друга на расстояниях, определяемых толщиной формуемых панелей. Между каждыми двумя формовочными отсеками размещается тепловой отсек. Для повышения качества и совершенствования технологии изделий из ячеистых бетонов, особенно с невысокой средней плотностью, осуществляют

293

герметизацию формовочного пространства. В результате повышенного давления газа создаются условия для получения более плотных межпоровых перегородок, увеличения прочности газобетона. Кроме того, исключается срезка «горбушки» и увеличивается оборачиваемость кассетных установок, что повышает эффективность производства газобетона.

На завершающей стадии технологического процесса кассетные формы поступают на предавтоклавную выдержку, затем удаляется неровная верхняя часть горбушка») и массив разрезается на изделия заданных размеров с помощью резательной машины. Ножом в ней является натянутая металлическая струна, совершающая возвратно- поступательные и вращательные движения, что позволяет разрезать массив в вертикальном и горизонтальном направлениях. Через 30—40 мин, а при вибрационном вспучивании несколько быстрее, изделия направляют в автоклавы для тепловлажностной обработки. Если вяжущим является портландцемент, то дальнейшее твердение изделий возможно и без автоклавов. По физико-химической сущности отвердевания изделий автоклавирование относится к процессам сложным. Оно производится при постепенном подъеме, изотермической вьщержке и снижении давления пара и температуры среды. Изотермический период при наивысшей температуре 175—200°С составляет примерно 6—8 ч. При этом в основном образуются гидросиликаты кальция, другие соединения, упрочняющие структуру.

После автоклавной обработки изделия транспортируют к складскому помещению, производят проверку размеров и при необходимости фрезерование, отделку поверхности и т. п. Если вяжущим является известь с кремнеземистым компонентом, а получаемый конгломератный материал газосиликат, то автоклавная обработка изделий строго обязательна. Она может начинаться через 20—30 мин после формования (вместо 30—40 мин при газобетоне). Следует отметить, что наибольший объем (около 2/з) произ- водства теплоизоляционных ячеистых бетонов приходится на долю газосиликата.

Расход извести в ячеистых бетонах несколько ниже, чем портландцемента (например, 150—180 вместо 270—300 кг/м3). При применении известково-цементного песчаного вяжущего общий расход его возрастает, но расход каждого компонента составляет около

125 кг/м3.

Пенобетон и пеносиликат получают с применением пенообразователей смолосапонинового, клееканифольного, ГК, алюмосуль-фонафтенового и др. Чтобы техническая пена до затвердевания ее стенок мембран») не распадалась, в смесь вводят стабилизаторы вязкие вещества типа жидкого стекла, животного клея. Основным компонентом смеси, как и в газобетонах и газосиликатах, остаются цементное тесто, цементно-песчаная или известково-песчаная растворные смеси. Песок подвергают частичному или полному помолу, иногда с вяжущим. Пену изготовляют отдельно в пеновзбива-теле и затем перепускают ее в пенобетоносмесительный аппарат; туда же подают растворную смесь. Через 2—3 мин перемешивания готовая пенобетонная смесь поступает в бункер, из которого она разливается в стальные формы. Далее повторяется технологический цикл автоклавирования. Так как вспучивание смеси с пеной завершается в основном в смесителе, то форма заполняется полностью, тогда как при газообразователях наполнение форм бетоном было возможным не более чем на половину их высоты.

При проектировании составов газо- и пенобетонов, газо- и пеносиликатов исходят из необходимости получения заданных пределов средней плотности и прочности с соблюдением наименьшего расхода вяжущего и порообразующего веществ. Учитывают также требования в отношении морозостойкости бетона и технологичности бетонной смеси. Рекомендуются различные методы подбора состава ячеистых бетонов, которые позволяют получать необходимые числовые показатели основных свойств, однако, более целесообразно и в данном случае пользоваться общим методом проектирования оп- тимальных составов ИСК. Он позволяет получать не только наиболее экономичные

294

бетоны по своему рациональному составу, но и с комплексом наилучших показателей строительно-технологических и эксплуатационных свойств (закон створа). Физико-механические свойства ячеистых бетонов характеризуются следующими показателями: маркой по пределу прочности при сжатии образцов-кубов с ребром 150 мм при влажности их 10 ± 2% по массе и 28-суточном твердении в нормальных температур- но-влажностных условиях хранения. По этому показателю ячеистые бетоны разделяются на марки Ml5, 25, 35, 50, 75, 100, 150 или, согласно ГОСТ 25485—82, на классы: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; B10; по морозостойкости: F15, 25, 50, 75, 100. Для разных целей применяют бетоны с различной прочностью и морозостойкостью. Так, например, конструкционные ячеистые бетоны должны иметь марку по прочности не менее 75 (класс не ниже В5,0), а по морозостойкости не менее 50.

При изготовлении армированных изделий из газо- и пенобетона, газо- и пеносиликата рекомендуется предварительно подвергать антикоррозионной обработке стальную арматуру. Важны теплотехнические свойства ячеистых бетонов, особенно при использовании их в качестве стеновых и других ограждающих конструкций. Так, на- пример, коэффициент теплопроводности их равен обычно 0,11—0,15 Вт/(м·К), а при уменьшении средней плотности до 250— 200 кг/м3 он равен 0,08—0,07 Вт/(м·К), что соответствует хорошим теплозащитным материалам. Эти бетоны имеют также высокую звукопоглощающую и звукоизолирующую способность. Так, при средней плотности 350 кг/м3 коэффициент звукопоглощения составляет 0,7 при частоте волн в среднем интервале 375—500 Гц. По огнестойкости многие ячеистые бетоны превосходят тяжелые цементные бетоны вследствие пониженного содержания в них гидратных соединений, которые являются наиболее уязвимыми к воздействию высоких (экстремальных) температур.

Следует отметить, что прочность, как и другие свойства ячеистых бетонов, обусловлена структурой, ее пористостью и поэтому находится в прямой зависимости от величины средней плотности. Если же средняя плотность остается постоянной, то тогда важней- шими факторами выступают активность вяжущего вещества и оптимальное содержание компонентов в смеси, так что оптимальной структуре ячеистого бетона всегда соответствует комплекс наиболее благоприятных показателей свойств (закон створа).

295

9.4.5. АРБОЛИТЫ (ДЕРЕВОБЕТОНЫ)

Арболит искусственный строительный конгломерат, получаемый путем формования и уплотнения (с последующим отвердеванием) правильно подобранной смеси цемента, древесного заполнителя, химических добавок и воды. Изготовление конструкций и изделий из арболита у нас в "стране и за рубежом в достаточной мере традиционно и служит убедительным примером рационального использования древесных отходов. В качестве заполнителя в них чаще всего применяют древесную дробленку, щепу, другие отходы деревообработки, а вяжущим веществом служит портландцемент. Имеется большой опыт изготовления арболита на основе гипса, особенно высокопрочного (а- модификации), каустического доломита и других вяжущих веществ.

По своей структуре арболит различают: плотный, крупнопористый и поризованный, по назначению теплоизоляционный (400—500 кг/м3) и конструкционно- теплоизоляционный (500— 650 кг/м3); по типу получаемого конгломерата он относится к разновидностям легких бетонов с возможным подразделением их на армированные и неармированные. В зависимости от предела прочности при сжатии образцов-кубов в арболитах выделяют классы В0,35; В0,75; В1, используемые как теплоизоляционные, и классы Bl,5; B2; В2,5; В3,5 — как конструкционно-теплоизоляционные. Теплоизоля- ционный арболит характеризуется марками М5, М10 и Ml5, конструкционный М25, М35 и М50. Соответствующие испытания арболита и конструкций из него производят по

ГОСТ 19222—84.

Арболит предназначен, в основном, для строительства малоэтажных сельскохозяйственных, промышленных, жилых и культурно-бытовых зданий. Этот материал обладает относительно высокими физико-механическими свойствами, является экологически чистым, легок в технологических операциях при сверлении, обработке режущим инструментом, поддается оштукатуриванию. Он относится к трудносгораемым, морозо- и биостойким, негигроскопичным. Теплопроводность арболита колеблется в пределах 0,09—0,21 Вт/(м·К). Он обладает малой тепло- и звукопроводностью, достаточно долговечен срок эксплуатации зданий 20—30 лет и более. Из него изготовляют стеновые панели и блоки, плиты покрытия для совмещенных кровель и плиты перекрытия (усиленные несущей основой), перегородочные плиты и др. По сравнению с панелями из легких бетонов с минеральными заполнителями типа керамзита стеновые панели из арболита имеют меньшую массу (почти в два раза), сниженный расход арматурной стали (в 3—4 раза), меньшую себестоимость, трудоемкость в изготовлении и монтаже. Производство арболитовых изделий осуществляют способом силового вибропроката. Мощность завода, работающего по такой технологии, составляет до 40 тыс.м3 изделий в год.

Однако следует учитывать и некоторые недостатки арболита повышенный расход цемента; необходимость предварительной обработки древесного заполнителя при использовании портландцемента; повышенное водопоглощение у теплоизоляционного 60—85%, у конструкционно-теплоизоляционного 50—70%, пониженную огнестойкость у теплоизоляционных арболитов.

Обработка древесной дробленки и щепы заключается в предварительном их вымачивании в воде для уменьшения содержания экстрактивных веществ, вредно действующих на портландцемент. Более эффективным является кратковременное замачивание в водных 3%-ных растворах сернокислого глинозема или 5%-ных растворах хлористого кальция или растворимого стекла. Вместо портландцемента целесообразнее использовать высокопрочный гипс. Он обеспечивает резкое возрастание оборачиваемости форм, исключает процесс тепловой обработки изделий. Дома из арболита строятся быстрее, стоимость их ниже, меньше затраты труда, что было установлено в научных работах М.И. Клименко и при строительстве жилых домов в сельских районах. На основе портландцемента А.А. Акчабаевым разработана принципиально новая конвейерная

296

технология арболита с уплотнением его прессованием с одновременной упаковкой отформованных изделий в пакет и обеспечением оптимизации их структуры1.

В зарубежном практике арболит также широко используют при возведении одноэтажных и высотных зданий различного назначения. Он именуется как дюризол в Швейцарии, вундстоун в США, пилинобетон в Чехии, чентерибоад в Японии, дюрипанель в Германии, велокс в Австрии и т. п.

1 Научно-производственные работы М.И. Клименко и А.А. Акчабаевым выполнялись под научным руководством И.А. Рыбьева

297

9.4.6. СПЕЦИАЛЬНЫЕ БЕТОНЫ

Специальными называют бетоны, используемые в специальных конструкциях или монолитных сооружениях. Для них выбирают наиболее целесообразные вяжущие вещества и заполнители, нередко изменяют традиционную технологию или отдельные технологические операции, параметры и, режимы. Понятно, однако, что все разновидности специальных бетонов, независимо от их конкретного функционального назначения, не перестают оставаться представителями ИСК. При оптимальных структурах они показывают комплекс экстремумов свойств, сохраняют другие общие закономерности а также подобие между собой. Вместе с тем каждая разновидность специальных бетонов отличается своими специфическими особенностями, которые должны учитываться при проектировании состава, обеспечении их оптимальной структуры, всегда действующей в определенных условиях изготовления и применения материала и изделий. Ниже рассмотрены некоторые виды специальных бетонов.

Дорожный цементный бетон относится к плотным тяжелым или легким бетонам, применяется для устройства автодорожных покрытий, оснований под асфальтобетонные покрытия, возведения мостовых конструкций и труб.

Маркировку дорожного бетона принято производить по прочности и морозостойкости. По пределу прочности при сжатии классы тяжелого бетона следующие: В5, В7,5, BIO, B15, В20, причем для верхних слоев покрытий классы В22,5 В25, ВЗО, а для нижних слоев

не выше В15 и В20; для легкого бетона В5, В7,5, В20. В железобетонных конструкциях мостов классы тяжелого бетона В15, В20, ВЗО, В40 и В45. Верхние пределы этих классов применяют для мостовых конструкций из так называемого преднапряженного железобетона, а нижние пределы их для массивных конструкций: опор, фундаментов, труб и др. По морозостойкости бетоны маркируют в пределах от 100 до 300 циклов замораживания. С целью повышения морозостойкости в бетон вводят добавки для вовлечения до 5—6% воздуха. Такой добавкой, в частности, может быть СНВ (на основе абиетиновой смолы), мылонафт и др. Воздушные пузырьки демпфируют давление льда в порах, что повышает эффект морозостойкости по количеству циклов испытания. Важным свойством бетона служит истираемость, характеризуемая потерей массы образца на 1 см2 испытуемой поверхности; имитирует сопротивляемость бетонного покрытия воздействию сил, возникающих при проезде транспорта. Более полную характеристику качества материала дает испытание на износ, показателем которого служит потеря массы (%) образца (пробы материала) при испытании в стандартном полочном барабане. Повышение сопротивления истираемости и износу достигают как применением более твердых пород в заполнителе, так и втапливанием в верхний слой свежеуложенного бетона минеральных зерен размером до 5 мм из особо твердых материалов, например кварцита, иногда корунда и др. Стабильность бетонного элемента в известной мере может быть охарактеризована коэффициентом температурного расширения, величина которого с усреднением должна быть не более 10·10-6 на С.

Состав бетонной смеси определяют одним из известных методов, а также общим методом проектирования оптимального состава ИСК. На стадии отбора исходных материалов учитывают, что наилучшей разновидностью вяжущего для дорожного бетона являются портландцемент гидрофобный и пластифицированный, а также обычный, но с пониженным содержанием С3А (не более 10%), при классе В40 и выше для верхнего слоя покрытий. С уменьшением содержания цемента уменьшаются усадочные деформации, повышается при его оптимуме долговечность бетона. Для предварительных расчетов обычный расход цемента принимается равным 320—350 кг/м3. Щебень и гравий следует применять промытыми, чтобы снизить содержание глинистых примесей (не более 1% по массе) и исключить органические вещества. Пески желательно использовать крупно- и среднезернистые, природные или полученные дроблением плотных горных пород.

298

Гидротехнический бетон также является разновидностью плотных тяжелых цементных бетонов; применяется для возведения сооружений, которые периодически или постоянно омываются водой. Гидротехнический бетон должен обладать комплексом технических свойств прочностью, характеризуемой восемью классами (от В7,5 до В40) по пределу прочности при сжатии, прочностью на растяжение, водостойкостью и водонепроницаемостью, морозостойкостью, характеризуемой семью марками от 50 до 500 циклов стандартного замораживания и оттаивания, малым тепловыделением при твердении и др. Особенно высокие показатели качества нормируют для бетонов, предназначенных для устройства конструкций и сооружений в зонах переменного уровня воды. Соответствующие требования устанавливаются и к качеству материалов для бетона. Так, для подводных зон целесообразно применять шлакопортланд-цемент и пуццолановый портландцемент, которые достаточно водостойки и низкотермичны. Для надводных зон применяют бетоны на основе гидрофобного и пластифицированного портландцемента. К бетонам в наружных частях гидротехнических сооружений предъ- являют повышенные требования по прочности (не ниже В20), морозостойкости (не ниже марки 300), водонепроницаемости (не ниже W6 или W8). Повышены требования и к материалам компонентам бетона. Так, например, портландцемент используется сульфатостойкий, крупный заполнитель должен обладать повышенной морозостойкостью (из плотных горных пород). К бетонам для внутренних частей массивных гидротехнических сооружений также предъявляются свои технические требования: применение шлако-портландцементов с малой и умеренной экзотермией, других портландцементов с активными минеральными добавками, марки бетонов возможны 100

и 150.

Сооружения, работающие в морских условиях, изготовляют из бетона на основе сульфатостойкого портландцемента. В подводных частях сооружений бетон должен надежно противостоять выщелачиванию гидроксида кальция. Этого достигают путем химического связывания его активным кремнеземом с образованием малорастворимых гидросиликатов кальция.

Для особо ответственных гидротехнических сооружений используют цементы, удовлетворяющие специальным техническим условиям.

Вода для затворения бетонной смеси используется в гидротехнических сооружениях с рН не менее 4 и не более 12,5. В ней ограничивается содержание солей, взвешенных пылевато-глинистых примесей, а также ионов SO42- и Сl-.

Жаростойкие бетоны сохраняют свои свойства при продолжительном воздействии высоких температур в тепловых агрегатах (футеровка туннельных печей и вагонеток, фундаменты под промышленные печи и трубы и т. п.) или кратковременном, ударном воздействии теплоты, сопровождающемся значительными температурными перепадами. Применяют как конструктивный и футеровочный материал.

Обычный тяжелый бетон способен стабильно сохранять или даже несколько увеличивать прочность при длительном нагревании до 100°С. При дальнейшем повышении температуры может возникнуть явление постоянного упрочнения за счет ускорения процессов гидратации. Однако при температурах выше 140—150°С обычно отмечается снижение прочности с ухудшением других свойств, так как частично разрушаются кристаллические гидратные новообразования, а также гидросиликатная фаза, главным образом в связи с удалением цеолитной воды. И хотя с некоторым риском можно допус- тить кратковременное подогревание бетонных конструкций до 200°С, все же дальнейшее повышение их температур в пределах 200—1700°С требует применения жаростойких (при температурах до 1580°С) или огнеупорных (1580—1770°С) бетонов.

Жаростойкие и огнеупорные бетоны могут быть особо тяжелыми, тяжелыми, легкими и облегченными, ячеистыми. Их получают на основе как гидравлических, так и воздушных вяжущих веществ: портландцемента, глиноземистого и высокоглиноземистого цементов, алюмофосфатного вяжущего, жидкого стекла с отвердителями, например

299

кремнефтористым натрием (Na2SiF6), нефелиновым шламом, феррохромовым шлаком. В качестве заполнителей употребляют хромитовые руды, бой магнезита, щебень из базальтов и диабазов, шамотный кирпичный щебень (бой) и др. В жаростойкие бетоны на основе портландцемента добавляют тонкомолотые активные минеральные вещества, обладающие, как и крупные заполнители, высокой огнеупорностью. Для огнеупорных бетонов используют высокоглиноземистый цемент, который к тому же имеет незначительную усадку и малый коэффициент термического расширения. Хорошо зарекомендовали себя фосфатные связующие (алюмофосфатное, алюмосиликатофосфатное, хромофосфатное и др.). Они позволяют получать огнеупорные бетоны, в том числе легкие, с применением в них вермикулитового, перлитового, керамзитового заполнителей, боя легковесных огнеупоров и т. п.

В жаростойкие ячеистые бетоны, в частности газобетоны, кроме портландцемента и алюминиевой пудры вводят тонкомолотый шамот, золу-унос, керамзит и др. Эти бетоны могут эксплуатироваться в условиях температур до 1200°С при сохранении прочности 2,5—5,0 МПа и средней плотности 600—800 кг/м3. Разработан состав особо легкого жаростойкого бетона, в который входят быст-ротвердеющий портландцемент, тонкомолотая силикат-глыба и легкие пористые и волокнистые заполнители. Этот бетон используют при температурах до 1000°С, а его средняя плотность в высушенном состоянии 300 кг/м3, прочность при сжатии 0,2 МПа. Теплопроводность при 20°С равна

0,09 Вт/(м·К), а при 600°С — 0,20 Вт/(м·К).

Структурообразование жаростойких бетонов происходит на стадии изготовления изделий и в условиях воздействия высоких температур, хотя последние могут приводить к его упрочнению (например, за счет уплотнения геля) и деструкции (например, за счет дегидратации кристаллогидратов) при применении гидравлических вяжущих веществ.

Из побочных продуктов промышленности как компонентов жаростойких бетонов применяют наиболее перспективные, например алюмохромовый продукт тонкодисперсный порошок отработавшего катализатора в нефтехимическом производстве. Он имеет развитую поверхность (до 5000 см2 в 1 г вещества) и высокую огнеупорность (до 2000°С). Его содержание в вяжущем веществе, как показали исследования в НИИКерамзит, приводит к увеличению прочности и огнеупорности смешанного вяжущего на портландцементе и глиноземистом цементе при высоких температурах, например выше 1500°С. Исследования по жаростойким бетонам продолжаются (рис. 9.17). В частности, достигнуты успехи в области получения бетонов высшей огнеупорности, которые в зависимости от их состава сохраняют прочность и другие свойства в заданных пределах при температурах свыше 2000—2500°С. Их изготовляют на основе цир-конийсодержащих вяжущих и с применением тугоплавких заполнителей. При температурах выше 1200°С прочность бетонов повышается за счет спекания смеси, особенно в области температур до 2000°С. Бетоны на цирконийсодержащих цементах являются перспективными для футеровки тепловых агрегатов, а также в других отраслях техники высоких температур в энергетической, металлургической, химической и ядерной промышленности. Жаростойкие газобетоны используют в виде крупных блоков и монолитных конструкций. Они в 2—3 раза дешевле фасонных огнеупорных изделий и, главное, позволяют индустриализировать строительство. Понятно, что при нагреве прочность бетона не остается постоянной и чем ближе температура к предельно допустимой, тем больше прочность бетона отклоняется от первоначальной (марочной). Однако она остается достаточной, чтобы сохранить структуру бетона, особенно его матричной части, на необходимом уровне, обеспечивающем прочность в пределах требуемого минимума. Следует отметить, что алюмофосфатные вяжущие и жидкое стекло с отвердителями обеспечивают сохранение остаточной прочности бетона более высокой по сравнению с другими вяжущими веществами (рис. 9.17).

300

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]