Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

STROITEL_NOE_MATERIALOVEDENIE_RYB_EV

.pdf
Скачиваний:
91
Добавлен:
01.05.2015
Размер:
7.29 Mб
Скачать

Карбоцепные полимеры характеризуются тем, что их молекулярные цепи целиком состоят

|

|

|

|

из атомов углерода: СССС− K

|| | |

Гетероцепные полимеры имеют в составе цепей кроме атомов углерода еще и некоторые другие атомы элементов кислорода,

|

|

|

|

|

серы, азота, фосфора, или других: С− O− С− O− С− K

|| | | |

Элементоорганические полимеры могут содержать в основной цепи атомы кремния, алюминия, титана и других элементов, не входящих в состав обычных органических

R R

| |

соединений. Так, например, соединения типа − Si− O − Si− O − имеют в макромолекуле

| |

R R

кремний-кислородные связи, именуемые силоксановыми.

По строению макромолекул органические полимеры могут быть линейными, разветвленными и сетчатыми (трехмерными). При линейном строении все молекулы вытянуты в виде цепей, в которых атомы мономера, являющиеся исходным низкомоле- кулярным соединением, химически связаны между собой. Разветвленные макромолекулы характерны наличием мономерных звеньев, ответвленных от основной цепи полимера. Сетчатые (пространственные) макромолекулы характеризуются химической «сшивкой» отдельных линейных или разветвленных цепей полимера поперечными связями (рис.

11.1).

Рис. 11.1. Строение молекул полимеров:

а линейная структура; б разветвленная структура; в структура пространственного полимера

Полимеры с макромолекулами линейного и разветвленного строения при нагревании плавятся с изменением свойств, а также способны растворяться в соответствующих органических растворителях. При охлаждении такие полимеры вновь отверждаются (так в отношении полимеров называется процесс отвердевания). Они способны многократно размягчаться при нагревании и отверждаться при охлаждении; их называют термопластичными (термопластами). Полимеры с макромолекулами трехмерного строения имеют повышенную устойчивость к термическим и механическим воздействиям, не растворяются, а лишь набухают в растворителях. Они не могут размягчаться при повторном нагревании; их именуют термореактивными (реактопластами). При высокотемпературном нагревании они подвержены деструкции и сгоранию.

391

Органические полимеры в твердом состоянии имеют обычно аморфную структуру. Однако существуют полимеры, которые в твердом состоянии характеризуются кристаллической или аморфно-кристаллической структурами.

В зависимости от способа получения полимеры разделяют на две группы: полимеризационные (термопласты) и поликонденсационные (реактопласты). Полимеризационные полимеры получают полимеризацией исходных мономеров с раскрытием кратных связей ненасыщенных углеводородов и соединением элементарных звеньев мономера в длинные цепи. Поскольку при полимеризации мономеров атомы и их группировки не отщепляются, то побочных продуктов в реакциях не образуется, а химический состав мономера и полимера остается одинаковым. В полимеризации могут участвовать два и более мономеров, тогда ее называют сополимеризацией, а продукт сополимером.

Поликонденсационные полимеры получают в процессе объединения (поликонденсации) двух или нескольких низкомолекулярных веществ. При протекании реакций образуется не только основной продукт, но и побочные соединения вода, спирт и др., так что хи- мический состав полимера всегда отличается от химического состава исходных продуктов поликонденсации.

Используемые в обоих процессах производства полимеров исходные сырьевые мономеры, способные при определенных условиях соединяться друг с другом, получают при переработке природных и нефтяных газов, каменного угля, аммиака, углекислоты и других веществ. По мере протекания процессов полимеризации и поликонденсации возрастает число атомов в образуемых макромолекулах и растет молекулярная масса формирующихся полимеров. Вначале образуются вещества с еще сравнительно невысокой молекулярной массой (до 5000 единиц), называемые олигомерами, по консистенции смолообразные. Вещества с более высокой молекулярной массой называются полимерами, растворимость, а также эластичность которых снижаются, но возрастает прочность одно из важнейших свойств полимера вследствие возрастающего эффекта действия межмолекулярных сил при росте молекулярной массы, что, кстати, отсутствует в обычных органических веществах типа битума и дегтей. Следует отметить, что на свойства полимера существенное влияние оказывает и водородный тип связи, особенно когда водород непосредственно связан с кислородом или азотом (ОН, МШ и др.). Водородная связь, хотя и слабее ковалентной, но значительно прочнее межмолекулярных (ван-дер-ваальсовых) сил притяжения.

Рис. 11.2. Прибор КремерСарнова:

392

1 внутренний стакан; 2 наружный стакан; 3

Рис. 11.3. Схема прибора Вика

для определения

термометр; 4 — диск; 5 — трубочки; 6 ртуть;

теплостойкости полимеров: 1

образец; 2 —

7 полимер для его испытания

наконечник; 3 — стержень; 4 — термошкаф; 5

 

груз

 

Технической характеристикой многих полимеров служат следующие свойства: термические температура размягчения и теплостойкость, температуры стеклования и текучести; механические прочность, деформативность и поверхностная твердость; химические атмосферостойкость и сопротивляемость деструкции. Каждое из этих свойств определяется стандартными методами, излагаемыми в соответствующих лабораторных практикумах по полимерным материалам. В частности, температуру размягчения определяют по методу КремерСарнова (рис. 11.2) или по «КиШ», теплостойкость на приборах Мартенса или Вика (рис. 11.3), температуры стеклования и текучести по методу Каргина, а механические свойства полимеров аморфного строения с помощью диаграмм относительных деформаций (рис. 11.4).

Рис. 11.4. Термомеханическая кривая термопластичных полимеров

Наряду с положительными свойствами полимеров малой средней плотностью, низкой теплопроводностью, высокой химической и атмосферной стойкостью, высокой прочно- стью и др. — они с позиций качества строительных материалов обладают и рядом недостатков низкой теплостойкостью, малой поверхностной твердостью, невысоким модулем упругости, значительной ползучестью, склонностью к старению, а также высокой стоимостью. Она может быть несколько снижена за счет применения в полимерах наполнителей и добавок.

393

11.1.1. ПОЛИМЕРИЗАЦИОННЫЕ ПОЛИМЕРЫ (ТЕРМОПЛАСТЫ)

Термопласты получают способом полимеризации по схеме: пМ→(М)n, где М молекула исходного мономера; (М)n макромолекула после химического синтеза, состоящая из n мономерных звеньев; n степень полимеризации.

Процесс полимеризации включает, в основном, три элементарных реакции: образование активного центра, рост цепи и обрыв цепи. Эти реакции могут осуществляться различными способами, но по следующей принципиальной схеме: образование активного центра ... М→М°; рост цепи ... М° + М1 → М2° + М1+ М3° + M1, ..., Мп°; обрыв цепи ... М3° →Рп, где М молекула мономера; М° активный центр; М2°, М3°,..., Мп° растущий радикал; Рп молекула полимера (макромолекула).

Взависимости от химической природы активных центров различают радикальную и ионную полимеризацию. При радикальной полимеризации активными центрами являются свободные радикалы, образующиеся при распаде перекисей и азосоединений, от воздейст- вия на мономер дополнительной энергии (нагревание, световые и другие облучения и др.).

При ионной (каталитической) полимеризации активными центрами служат ионы,

образующиеся при распаде катализаторов (AlCl2, ВF3, TiCl4), которыми являются щелочные и щелочноземельные металлы, кислоты и металлоорганические соединения. В промышленности используют три способа полимеризации: в блоке, в растворе и в эмульсии (суспензии).

Блочная полимеризация может осуществляться без растворителей периодическим или непрерывными способами. В первом случае получают блок полимера, имеющий форму сосуда (емкости), в котором происходила реакция полимеризации; во втором осуществ- ляют непрерывный выход расплава полимера из реактора. Этот способ характеризуется полимеризацией мономера в «чистом» виде в присутствий инициатора или катализатора реакции.

Полимеризация в растворе производится «лаковым» способом и в жидкости, не растворяющей полимер. Полученный раствор полимера в растворителе лак») непосредственно используют в промышленности или полимер выделяют путем осаждения или испарения растворителя. При полимеризации по второму способу применяют жидкость, растворяющую только мономер. По мере образования полимер выделяется из раствора в виде осадка или может быть отфильтрован. Полимеризация в растворе позволяет легко отводить теплоту реакции и регулировать степень полимеризации.

Эмульсионная или суспензионная полимеризация является наиболее распространенной в промышленности для получения многих полимеров. В качестве дисперсионной среды при полимеризации эмульсии или суспензии используют воду с эмульгатором, который улучшает эмульгирование мономера в воде. В зависимости от способа приготовления эмульсии мономера в воде и условий проведения полимеризации различают эмульсионную (латексную) и суспензионную (капельную) полимеризацию.

Вкачестве эмульгаторов обычно применяют мыла: олеаты, лау-раты щелочных металлов, натриевые соли ароматических сульфо-кислот и др. Часто эмульсионную полимеризацию проводят в присутствии водорастворимых индикаторов (перекись водорода и др.).

Поскольку при капельной полимеризации вводят инициатор реакции, не растворимый в воде, но растворимый в мономере, то полимер образуется как бы в каждой отдельной «капле».

Впроцессе полимеризации могут возникать полимеры, имеющие неодинаковую конфигурацию отдельных звеньев по всей длине цепи. Такие полимеры называют атактическими (неупорядоченными). Однако при полимеризации в присутствии катализаторов практически всегда образуются полимеры, имеющие одинаковую конфи- гурацию последовательных звеньев. Их именуют как упорядоченные изотактические полимеры. Они обладают повышенным качеством.

394

К важнейшим полимеризационным полимерам (термопластам) следует отнести полиэтилен, полипропилен, полиизобутилен, поливинилхлорид, полистирол, полиакрилаты и др.

Полиэтилен [—СH2СH2—]n продукт полимеризации этилена. Выпускается в виде гранул размером 3—4 мм или белого порошка.

Исходным мономером для полимеризации является газообразный этилен nСН2 = СН2, получаемый чаще всего при термической обработке нефти. В настоящее время промышленность использует следующие методы полимеризации этилена: полимеризация при высоком давлении (до 300 МПа) в присутствии кислорода; при среднем давлении (3,5—7,0 МПа) — в углеродистых растворителях с окисно-металлическими катализаторами, при атмосферном или очень малом давлении (0,5—3 МПа) с металл органическими катализаторами.

Полимеризация этилена при высоком давлении производится в трубчатых реакторах и отличается сложностью технологического оборудования. Полиэтилен высокого давления

химически стойкий продукт плотностью 0,95 г/см3 и с повышенной эластичностью, что объясняется наличием в нем 45% аморфной фазы.

Производство полиэтилена при среднем давлении основано на полимеризации этилена в растворе. Этот метод производства полиэтилена в нашей стране широкого распространения не нашел.

При получении полиэтилена низкого давления не требуется сложного компрессорного хозяйства. При низком давлении полиэтилен получают полимеризацией этилена в растворе (бензине) непрерывным методом при давлении 0,15—0,5 МПа и температуре до 80°С в присутствии катализатора ЦиглераНатта (комплексные метал-лорганические соединения).

Рис. 11.5. Строение молекулы полиэтилена

Полиэтилен низкого давления имеет значительные теплостойкость, плотность и жесткость. Основным отличием полиэтилена низкого давления является его кристал-

395

личность, в результате чего меньшие эластичность, прозрачность и большая твердость. Будучи термопластичным насыщенным полимерным углеводородом, полиэтилен имеет строение молекулы в виде плоского зигзага с периодом идентичности 0,254 (рис. 11.5).

Физико-механические свойства полиэтилена в значительной мере зависят от степени полимеризации, т. е. от молекулярной массы готового продукта. Молекулярная масса полиэтилена находится в пределах: низкого давления 10 000—50 000 и высокого давления 80 000—400 000. Предел прочности при разрыве в зависимости от моле кулярной массы полиэтилена колеблется от 18 до 25,5 МПа, плотность 0,92—0,95 г/см3, температура плавления 110—125°С, модуль упругости 150—800 МПа.

Полиэтилен (высокомолекулярный) хорошо поддается механической обработке, стоек против агрессивного действия воды, соляных растворов, щелочей, кислот (кроме азотной). При нормальной температуре он нерастворим в органических растворителях и только при нагревании поддается растворению в ароматических углеводородах.

Полиэтилен применяют для производства труб, пленок, гидроизоляционных материалов, тары и предметов сантехнического оборудования. Порошкообразный полиэтилен успешно используют для антикоррозионной защиты металла. Для производства строительных материалов и изделий выпускают следующие марки полиэтилена: 20606-012 (низкого давления), 11802-070 (высокого давления).

Полистирол [—СH2СНС6H5—]n твердый продукт полимеризации мономера стирола. Его выпускают в виде прозрачных листов, гранул (блочный полистирол), бисера или белого порошка (эмульсионный полистирол). Макромолекула его имеет полидиспер- сную разветвленную структуру. Сырьем для производства полистирола служит стирол C6H5CH = СH2 бесцветная воспламеняющаяся жидкость, содержащаяся в некоторых фракциях каменноугольной смолы или вырабатываемая из бензола и этилена. Стирол легко полимеризуется под действием солнечного света и теплоты. В производственных условиях стирол полимеризуют при температуре 80°С в присутствии перекисных соединений (перекиси водорода и перекиси бензоила).

Блочный полистирол имеет высокие механическую прочность (Rp - 35—60 МПа, R = 80— 110 МПа) и водостойкость. Молекулярная масса его от 50 000 до 300 000, плотность 1,04—1,06 г/см3, теплопроводность 0,10—0,15 Вт/(м·К). Стоек к действию кислот и щело- чей, но имеет хрупкость и невысокую теплостойкость.

Из полистирола изготовляют гидроизоляционные пленки, облицовочные плиты, водопроводные трубы, теплоизоляционные материалы, различную тару, изделия для электропромышленности. Пе-нополистирол является наполнителем многослойных панелей, хорошим теплоизолятором.

Полипропилен [—CH2СНСН3—]n продукт полимеризации пропилена в растворителе (бензин, пропан и др.). Сырьем для получения полипропилена служит бесцветный газ пропилен, выделяющийся при крекинге нефти. Полимеризация пропилена ведется обычно при избыточном давлении 4 МПа и температуре 70°С. Молекулярная масса полимера колеблется в широких пределах от 35 000 до 150000. Пропилен хорошо сопротивляется воздействию органических растворителей и имеет ряд других положительных свойств. К недостаткам полипропилена следует отнести его малую атмосферостойкость. При воздействии солнечных лучей он подвергается деструкции с заметным ухудшением первоначальных физико-механических свойств. Является перспективным полимером для производства труб, пленок и других изделий, используемых в строительстве при изготовлении бассейнов, пластиковых лестниц и других конструкций.

Поливинилхлорид [—СH2СНС1—]n продукт полимеризации хлористого винила. Выпускается в виде порошка без запаха и вкуса с размером зерен от 0,01 до 0,1 мм. Сырьем для получения поливинилхлорида служит хлористый винил СШ = СНС1 — при атмосферном давлении газ с эфирным запахом. Его получают из ацетилена или из дихлорэтана.

396

В результате полимеризации хлористого винила (винилхлорида) образуется полимер, молекула которого имеет линейное строение.

К важнейшим техническим свойствам поливинилхлорида следует отнести его относительно высокую ударную вязкость, прочность при разрыве (до 60,0 МПа), устойчивость к воздействию щелочных и кислых растворов, а также высокие диэлектрические свойства. Его истинная плотность 1,3—1,4 г/см3, водопоглощение за 24 ч 0,4—0,5%, теплопроводность 0,16 Вт/(м·К), твердость по Бринеллю до 16.

Изделия на основе этого полимера (трубы, плитки) легко свариваются в струе горячего воздуха при температуре 200°С.

Недостаток поливинилхлорида сравнительно низкая температура размягчения (70°С). При нагревании этого полимера до 140—150°С начинается его разложение с выделением хлористого водорода, каталитически ускоряющего процесс разложения.

На основе поливинилхлорида изготовляют синтетические лино-леумы, плитки для пола, линкруст, трубы, газонаполненные пластмассы, строительные профили для окон (оконные переплеты) и двери, облицовочные панели типа «Сайдинг» — методом экструзии. Пластифицированный поливинилхлорид широко используют для получения гидроизоляционных и упаковочных пленок; хлорированный поливинилхлорид с содержанием 60—80% хлора (перхлорвинил) применяют для получения стойких лаков и фасадных красок.

Полиизобутилен [—СH2С(СН3)2—]n продукт полимеризации изобутилена, полимер без цвета и запаха. Сырьем для получения полимера служит изобутилен, образующийся при переработке нефти. В процессе производства полиизобутилена полимеризация осуществляется при пониженных температурах (-110°С), что достигается отводом теплоты с помощью хладагентов и разбавителей, добавляемых в реакционную смесь.

Полиизобутилен с молекулярной массой менее 50 000 — вязкая жидкость. В технике этот полимер применяют с большой молекулярной массой — 300 000, предоставляющий собой каучукоподобный эластичный материал (относительное удлинение 1000—2000%). Полиизобутилен имеет ряд положительных свойств. Он достаточно легок (плотность 0,91 г/см3), водостоек (водопоглощение 0,05%) и стоек к действию агрессивных сред. Предел прочности полиизобутилена при разрыве 6,0—7,0 МПа. Полиизобутилен в виде листов и пленок применяют в качестве хорошего гидроизоляционного материала. В отличие от каучука не способен к вулканизации (химической «сшивке» молекул).

Поливинилацетат продукт цепной полимеризации винилацетата, сложного эфира уксусной кислоты и винилового спирта. Поливинилацетатные полимеры применяют в виде водных эмульсий для устройства бесшовных полов и изготовления лакокрасочных материалов. Они эластичны, светостойки и хорошо прилипают к поверхности различных материалов.

Индено-кумароновые полимеры продукты полимеризации соединений индено- кумарона и их гомологов, содержащихся в сыром бензоле и фенольной фракции каменноугольной смолы. Их выпускают в виде кусков или чешуек плотностью 1,05—1,2 г/см3. Эти полимеры применяют для производства плиток для пола, изготовления лаков и красок для внутренней отделки.

Полиметилметакрилат (органическое стекло) — продукт полимеризации метилового эфира метакриловой кислоты. Он представляет собой совершенно прозрачный полимер в виде листов, блоков и прессовочных порошков.

Сырьем для получения органического стекла служит метилметакрилат, синтезируемый из ацетона путем его сложной химической переработки. Полимеризация ведется блочным методом при получении полимера с молекулярной массой более 200 000 и эмульсионным

для производства порошкообразного продукта с молекулярной массой от 4000 до 100

000.

Изделия из органического стекла имеют относительно высокую прочность при сжатии (предел прочности до 160 МПа), растяжении и изгибе (до 100 МПа), а также

397

значительную ударную вязкость. Полиметилметакрилат легко поддается механической обработке (резанию, шлифованию и полировке) и почти не снижает своих свойств при по- ниженных температурах. Он отличается исключительной прозрачностью и способностью пропускать до 74% ультрафиолетовых лучей. Однако следует заметить, что при соприкосновении с огнем полимер горит, не стоек в отношении агрессивных сред, легко растворяется в ряде органических растворителей (ацетон, уксусная кислота и др.). Высокая стоимость этого полимера и недостаточная абразивостойкость ограничивают его применение в строительстве.

Полиметилметакрилат используют для остекления зданий специального назначения, витрин магазинов, веранд, оранжерей, боль ниц, для изготовления светильников, фонарей производственных цехов и т. п. Его можно получать окрашенным в различные цвета, прозрачным и непрозрачным.

Синтетические каучуки эластичные продукты цепной полимеризации различных углеводородных мономеров: изопрена, дивинила (бутадиен), хлоропрена и др. Изопрен представляет собой газ, переходящий при температуре -35°С в бесцветную жидкость. Его получают в промышленном масштабе путем взаимодействия изобутилена с формальдегидом. Дивинил бесцветный газ, подобно изопрену, относится к. соединениям с двойными связями и имеет наибольшее применение в производстве синтетических каучуков. В промышленности его получают из этилового спирта, бутана и ацетальдегида. Хлоропрен бесцветная жидкость, синтезируемая из ацетилена и хлористого водорода.

Взависимости от исходного мономера в процессе полимеризации получают различные виды синтетических каучуков изопреновые, бутадиеновые, бутадиен-стирольные, хлоропреновые и др.

Вгруппе изопреновых каучуков следует отметить бутилкаучук (СКИ-3). Он представляет собой продукт полимеризации изобутилена с малым количеством (1—5%) изопрена и является важнейшим видом синтетического каучука. Бутилкаучук отличается высокой морозостойкостью, эластичностью, водостойкостью, стойкостью к действию кислорода и сильных кислот. За последнее время особое значение приобрели полиизопреновые каучуки (СКИ). Каучуки этого вида по химическому составу и структуре молекул весьма близки натуральному каучуку, чем и объясняется аналогия свойств этих полимерных материалов. Полиизопреновые каучуки обладают высокими прочностными показателями при растяжении, эластичностью при статических и динамических нагрузках, а также высокой стойкостью при нагревании и окислении.

Из группы бутадиеновых каучуков следует выделить поливиниловый. Он является первым в мире синтетическим каучуком. В настоящее время промышленность выпускает полидивиниловый (СКД), бутадиен-стирольный (СКС), бутадиен-нитрильный и др. По эластичности эти каучуки близки к натуральным каучукам, но превосходят их по теплостойкости и стойкости к истиранию.

Хлоропреновые каучуки получают в процессе эмульсионной полимеризации хлоропрена, обладающего высокой полимеризационной активностью благодаря наличию в нем атома хлора. В нашей стране хлоропреновые каучуки выпускают различных марок под общим названием наириты. Эти каучуки имеют высокую клейкость, стойкость против воздействия кислорода, света, кислот и щелочей. Они обладают повышенной газонепроницаемостью, огнестойкостью (обугливаются, но не горят), высокой масло- и бензостойкостью, низкой растворимостью и набухаемостью в раствори телях. Однако хлоропреновые каучуки склонны к повышенной кристаллизации при нормальной (комнатной) температуре и имеют малую морозостойкость.

Встроительстве синтетические каучуки применяют для производства различных клеев и мастик (битумно-кумароно-каучуковые, кумароно-каучуковые и др.). Их используют также для модификации различных полимеров с целью повышения их упругих свойств. Синтетические каучуки находят широкое применение для изготовления герметиков и

398

герметизации швов между панелями при крупнопанельном домостроении; при изготовлении пластобетонов и растворов; для получения различного вида резин. Синтетические латексы представляют собой водные дисперсии синтетических каучуков и по коллоидно-химическим свойствам аналогичны натуральным латексам. Частицы каучука в синтетическом латексе, имея отрицательный заряд, коагулируют под действием электролита. Синтетические латексы лучше (по сравнению с натуральными) проникают в обрабатываемый ими материал, поскольку имеют меньший размер глобул. Свойства пленок, образованных синтетическими латексами, соответствуют свойствам пленок поли- меров. Кроме каучука и воды в состав латексов входят эмульгаторы, противостарители и другие компоненты. В настоящее время наибольшее распространение получили бутадиен- стирольные, бутадиен-нитрильные, хлоропреновые латексы. Их применяют обычно для тех же целей, что и синтетические каучуки. Акриловые латексы получают методом эмульсионной сополимеризации метакриловой и акриловой кислот или стирола с эфиром этих кислот (стирол-акриловые латексы). Используют для штукатурных, клеевых и других работ. Основные физико-механические свойства полимеризационных полимеров приведены в табл. 11.1.

Таблица 11.1. Основные физико-механические свойства полимернзационных

полимеров

 

Свойства

 

 

 

 

 

Наименование

 

 

предел

водопог-

коэффи-

 

плотность,

молекуляр-

прочности

лощение,

циент теп-

Мрз,

полимера

г/см3

ная масса

при растя-

% по мас-

лопровод-

°C

 

 

 

жении, МПа

се

ности,

 

 

 

 

Вт/(м·К)

 

 

 

 

 

 

 

Полиэтилены:

 

 

 

 

 

 

высокого

0,92

до 50 000

17,8

0,01

-60

давления

 

 

 

 

 

 

низкого давления

0,95

80 000—

24,5

-80

400 000

 

 

 

 

 

 

Полиизобутилен

0,91—0,93

5,9-6,9

0,05

0,12—0,13

-50

Поливинилхлорид

1,3-1,4

29,0—36,8

0,4-0,6

0,16

 

Полистирол

1,04—1,07

 

 

 

 

399

11.1.2 ПОЛИКОНДЕНСАЦИОННЫЕ ПОЛИМЕРЫ (РЕАКТОПЛАСТЫ)

Поликонденсационные полимеры (реактопласты) получают в процессе реакции поликонденсации. При поликонденсации высокомолекулярное соединение образуется в результате последовательного взаимодействия молекул, содержащих две или несколько функциональных групп, способных вступить в реакцию (H2—OH2; Cl=NH2; СООН и др.). Она протекает обычно при нагревании или под действием катализаторов. Кроме полимера выделяются побочные низкомолекулярные продукты (вода, хлористый водород, спирты и др.).

Схему синтеза конденсационных полимеров можно представить на примере взаимодействия фенола и формальдегида. Фенол С6Н3ОН при нагревании в водных растворах кислот или щелочей вступает в реакцию с формальдегидом, растворенным в воде, т. е. формалином, по схеме

Х(С6Н5ОН) +…+ Y(CH2O)

фенол + формальдегид полимер + H2O

При реакции поликонденсации в зависимости от состава исходных продуктов могут образовываться как линейные цепи макромолекул, придающие полимеру термопластичные свойства, так и цепи пространственного строения термореактивные полимеры.

Из полимеров, полученных поликондеисацией, в строительстве чаще всего используют фенолоформальдегидные, карбамидные, полиэфирные, эпоксидные, полиамидные и некоторые другие полимеры.

Фенолоформальдегидные полимеры получаются путем поликонденсации фенола с формальдегидом. Фенол С6H5ОН представляет собой бесцветные кристаллы игольчатого типа с характерным сильным запахом. Он токсичен, вдыхание его приводит к отравлению, а попадание на кожу вызывает ожоги. Формальдегид газ с резким удушливым запахом, 40%-ный раствор его в воде называют формалином (CH2О).

В зависимости от соотношения исходных продуктов поликонденсации, характера катализаторов получают различнее виды фенолоформальдегидных полимеров. При избытке фенола и конденсации в кислой среде получают новолачные (термопластичные) полимеры с линейным строением молекул. При избытке формальдегида и конденсации в щелочной среде образуются резольные (термореактивные) полимеры с сетчатым (трехмерным) строением молекул. В процессе поликонденсации резольных полимеров можно выделить три основные стадии: А резолы, В резистолы и С резиты.

Полимер в стадии А растворяется в спирте, ацетоне и других органических растворителях и с большей или меньшей скоростью в зависимости от температуры переходит в неплавкое и нерастворимое состояние (процесс отверждения). Полимер в стадии В теряет способность плавиться при нагревании, растворяться в органических растворителях и только набухает. Конечная стадия конденсации, стадия С, характерна неплавкостью и нерастворимостью полимера.

Фенолоформальдегидные полимеры в твердом состоянии характеризуются высокой поверхностной твердостью и представляют собой хрупкие стеклообразные массы. Одним из достоинств феноло-формальдегидных полимеров является их способность хорошо совмещаться с наполнителями и давать материалы более прочные, теплостойкие и менее хрупкие, чем сами полимеры. Эти полимеры отличаются высокой адгезией к древесине, хлопчатобумажным тканям, бумаге. Фенолоформальдегидные полимеры и материалы на их основе обладают исключительно высокой химической стойкостью. Они используются для производства клеев, древесностружечных, древесноволокнистых и слоистых плит и пластиков, бумажносло-истых пластиков, водостойкой фанеры, сотопластов, минераловатных и стекловатных матов, спиртовых лаков.

400

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]