
- •Балякин в.Б., Васин в.Н. Детали машин: Учебное пособие / Cамар. Гос. Аэрокосм. Ун-т. Самара, 2004. 152 с.
- •Допускаемые напряжения изгиба...................................................................26
- •Усилия в зацеплении……………………………………………………………….41
- •Расчет на контактную прочность………………………………………………....44 Расчет на изгибную прочность........................................................................46
- •Материалы и конструкция деталей червячной передачи.............................61
- •Расчет болтов, нагруженных эксцентричной нагрузкой..............................115
- •Принципы расчёта деталей машин по основным критериям работоспособности
- •Надёжность и долговечность деталей машин
- •Лекция №2 Выбор допускаемых напряжений при статических и переменных нагрузках
- •Циклы нагружения
- •Определение коэффициента запаса прочности Коэффициент запаса прочности (безопасности)
- •Передачи Основные понятия. Классификация механических передач
- •Энергетические и кинематические соотношения механических передач вращательного движения
- •Лекция №3 Зубчатые передачи
- •Классификация зубчатых передач
- •Понятие об эвольвенте
- •Основная теорема зацепления
- •Элементы геометрии эвольвентного зацепления
- •Коэффициент перекрытия. Скольжение и трение в зацеплении. Смазка зацепления
- •Контактные напряжения и контактная прочность
- •Линейный контакт
- •Точечный контакт
- •Лекция №4 Виды разрушения зубьев Поломка зубьев
- •В Рис. 4.2 Рис. 4.3 Рис. 4.4ыкрашивание поверхностей
- •Заедание
- •Износ поверхностей
- •Допускаемые контактные напряжения
- •Допускаемые напряжения изгиба
- •Лекция №5
- •Передачи цилиндрическими колесами
- •С прямыми зубьями
- •Элементы геометрического расчета
- •Нарезание зубьев со смещением (корригирование).
- •Усилия в зацеплении
- •Расчетная нагрузка
- •Лекция №6 Расчет зубчатого зацепления на контактную прочность
- •Проектировочный расчет. Для проектировочного расчета представим ширину зубчатого венца в виде
- •Расчет на изгибную прочность
- •Лекция №7 Передача цилиндрическими колесами с косыми зубьями. Элементы геометрического расчета
- •Усилия в зацеплении
- •Понятие об эквивалентных колесах и определение их размеров
- •Расчет на контактную прочность
- •Расчет на изгибную прочность
- •Лекция №8 Передачи коническими колесами
- •Элементы геометрического расчета
- •Усилия в зацеплении
- •Эквивалентные колеса и определение их параметров
- •Расчет на контактную прочность
- •Расчет на изгибную прочность зубьев конического колеса
- •Потери в зацеплении и определение кпд зубчатых передач
- •Лекция №9 Червячные передачи Общая характеристика
- •Типы червячных передач
- •Геометрические параметры червячной передачи
- •Кинематика червячных передач
- •Усилия в червячной передаче
- •К.П.Д. Червячной передачи
- •Лекция №10 Виды разрушений червячных передач
- •Материалы и конструкция деталей червячной передачи
- •Определение допускаемых напряжений
- •Цилиндрическое колесо эквивалентное червячному
- •Расчет червячной передачи на контактную прочность
- •Расчет червячной передачи по напряжениям изгиба
- •Тепловой расчет червячного редуктора
- •Лекция №11 Ременные передачи Элементы геометрии ременной передачи
- •Длина ремня определяется как сумма прямолинейных участков и дуг охвата
- •Скольжение в ременной передаче
- •Передаточное число ременной передачи
- •С Рис. 11.4 а билы в ременной передаче
- •Нагрузка на валы и опоры
- •Напряжения в ремне
- •Критерии работоспособности ременных передач
- •Лекция №12 Валы и оси
- •Критерии работоспособности осей и валов
- •Выбор расчетных схем и нагрузок
- •Р Рис. 12.4асчет осей
- •Расчет валов
- •Статическая прочность вала
- •Усталостная прочность вала
- •Порядок расчета вала
- •Лекция №13 Гидродинамическая теория трения
- •Виды трения скольжения
- •Гидродинамический эффект
- •Контактно – гидродинамическая теория смазки
- •Подшипники скольжения
- •Критерии работоспособности
- •Расчет подшипников полужидкостного трения
- •Р Рис. 13.10Рис. 13.11асчет подшипников жидкостного трения
- •Лекция №14 Подшипники качения
- •Конструкция и классификация опор качения
- •Критерии работоспособности и расчета подшипников качения
- •Контактные напряжения в деталях подшипников
- •Распределение нагрузки между телами качения
- •Кинематика подшипника качения
- •Лекция №15 Зависимость между грузоподъемностью и долговечностью подшипников качения
- •Подбор подшипников по динамической грузоподъемности
- •Подбор подшипников по статической грузоподъемности
- •Посадки подшипников
- •Смазка подшипников качения
- •Мероприятия по повышению долговечности подшипников
- •Лекция №16 Соединения
- •Резьбовые соединения
- •Классификация резьб
- •Геометрические параметры резьбы
- •Основные типы крепежных деталей
- •Условия самоторможения резьбы
- •Лекция №17 кпд резьбовой пары
- •Распределение нагрузки по виткам резьбы
- •Расчет резьбы на прочность
- •Лекция № 18 Ненапряженные и напряженные резьбовые соединения
- •Ненапряженное соединение
- •Р Рис. 18.2асчет затянутого болта при отсутствии внешней нагрузки
- •Расчет болтового соединения, нагруженного силами, сдвигающими деталь по стыку
- •Расчет болтов, нагруженных эксцентричной нагрузкой
- •Лекция19 Расчет напряжений резьбовых соединений, нагруженных внешней осевой силой
- •Определение податливости болтов и соединяемых деталей
- •Расчет болтов при переменных нагрузках
- •Лекция №20 Конструктивные и технологические мероприятия, повышающие прочность резьбовых соединений
- •Расчет группы болтов
- •Лекция №21 Шпоночные соединения
- •Соединение призматическими и сегментными шпонками
- •Соединение клиновыми шпонками
- •Шлицевые соединения
- •Расчет шлицевых соединений
- •Расчет зубьев на износ
- •Лекция №22 Сварные соединения
- •Виды сварки
- •Виды сварных соединений и типы сварных швов
- •Расчет на прочность нахлестного соединения
- •Допускаемые напряжения
- •Лекция №23 Заклепочные соединения
- •Расчет заклепок
- •Расчет соединяемых деталей
- •Расчет соединений при несимметричном нагружении
- •Заключение
- •Список используемых источников
- •Балякин Валерий Борисович Васин Виталий Николаевич детали машин
- •443056 Самара, пр. Масленникова, 37.
Виды сварки
Ручная дуговая сварка плавящимся электродом. Нагрев производится электрической дугой между изделием и электродом. Электрод, расплавляясь, служит присадочным материалом для образования сварного шва.
Автоматическая дуговая сварка плавящимся электродом под флюсом.При сварке шов формируется в значительной степени за счет расплавленного основного металла, что значительно сокращает расход электродного материала.
Электрошлаковая сварка– сварка плавлением, при которой для нагрева металла используется теплота, выделяющаяся при прохождении электрического тока через расплавленный шлак. Применяется для сварки крупногабаритных деталей.
Контактная сварка -основана на использовании повышенного оммического сопротивления в стыках деталей и осуществляется несколькими способами:
1. Стыковая контактная сварка основана на нагреве стыкуемых торцов деталей теплотой, выделяющейся при прохождении электрического тока силой в несколько тысяч ампер. Нагрев торцов деталей производится либо до оплавления их (сварка плавлением), либо до пластического состояния с последующим сдавливанием деталей (сварка давлением).
2. Шовная контактная сварка, при которой соединение элементов выполняется внахлестку вращающимися дисковыми электродами в виде непрерывного или прерывного шва. Применяется для получения герметичных швов в тонколистовых конструкциях.
3. Точечная контактная сварка, при которой соединение элементов происходит на участках, ограниченных площадью торцов электродов. Применяется в тонколистовых конструкциях, в которых не требуется герметичность швов.
Виды сварных соединений и типы сварных швов
В зависимости от расположения соединяемых деталей различают следующие виды сварных соединений:
I.Стыковые соединения
(рис. 22.1) являются наиболее простыми и
надежными.
Рис.
22.1
В зависимости от толщины соединяемых элементов, соединение выполняют с обработкой или без обработки кромок, с подваркой или без подварки с другой стороны. Виды обработки кромок приведены на рис. 22.2
Рис. 22.2
Рис.
22.3
,
где lиδ –ширина и толщина деталей;
[’]=·[] – допускаемое напряжение для сварных соединений;
- коэффициент прочности сварного шва;
[]– допускаемое напряжение основного металла.
II.Нахлесточные соединениявыполняются с помощью угловых (валиковых) швов (рис. 22.4).
Рис.
22.4 Рис. 22.5
В
зависимости от положения шва относительно
линии действия силыF
угловые швы называются лобовыми,
фланговыми, косыми, комбинированными
и кольцевыми.
Рассмотрим формы поперечного сечения углового шва (рис. 22.5):
Нормальная (рис. 22.5,а), выполняемая в виде равнобедренного прямоугольного треугольника.
Выпуклая (рис. 22.5, б). Выпуклый шов образует резкое изменение формы сечения деталей в месте соединения, что является причиной повышенной концентрации напряжений.
Специальная (рис. 22.5, в) с сечением в виде прямоугольного неравнобедренного треугольника с основанием, большем высоты.
Выгнутая (рис.22.5, г). Такой шов снижает концентрацию напряжений и рекомендуется при действии переменных нагрузок. Вогнутость шва достигается обычно механической обработкой, которая значительно увеличивает стоимость соединения. Поэтому такой шов применяют только в особых случаях, когда оправдываются дополнительные расходы.
Основные геометрические характеристики углового шва – катет k и высотаh.Для нормального шваh = k·sin450 0,7k.
Катет швов нахлесточных соединений при сварке тонких листов (менее 4 мм) делают равными по толщине листов . Для деталей большей толщины катет шва определяют из соотношения
k = 0,4 + 2 мм (22.1)
При сварке деталей разной толщины катет шва делают равным толщине более тонкого материала, но не более, чем по формуле (22.1).