
- •Балякин в.Б., Васин в.Н. Детали машин: Учебное пособие / Cамар. Гос. Аэрокосм. Ун-т. Самара, 2004. 152 с.
- •Допускаемые напряжения изгиба...................................................................26
- •Усилия в зацеплении……………………………………………………………….41
- •Расчет на контактную прочность………………………………………………....44 Расчет на изгибную прочность........................................................................46
- •Материалы и конструкция деталей червячной передачи.............................61
- •Расчет болтов, нагруженных эксцентричной нагрузкой..............................115
- •Принципы расчёта деталей машин по основным критериям работоспособности
- •Надёжность и долговечность деталей машин
- •Лекция №2 Выбор допускаемых напряжений при статических и переменных нагрузках
- •Циклы нагружения
- •Определение коэффициента запаса прочности Коэффициент запаса прочности (безопасности)
- •Передачи Основные понятия. Классификация механических передач
- •Энергетические и кинематические соотношения механических передач вращательного движения
- •Лекция №3 Зубчатые передачи
- •Классификация зубчатых передач
- •Понятие об эвольвенте
- •Основная теорема зацепления
- •Элементы геометрии эвольвентного зацепления
- •Коэффициент перекрытия. Скольжение и трение в зацеплении. Смазка зацепления
- •Контактные напряжения и контактная прочность
- •Линейный контакт
- •Точечный контакт
- •Лекция №4 Виды разрушения зубьев Поломка зубьев
- •В Рис. 4.2 Рис. 4.3 Рис. 4.4ыкрашивание поверхностей
- •Заедание
- •Износ поверхностей
- •Допускаемые контактные напряжения
- •Допускаемые напряжения изгиба
- •Лекция №5
- •Передачи цилиндрическими колесами
- •С прямыми зубьями
- •Элементы геометрического расчета
- •Нарезание зубьев со смещением (корригирование).
- •Усилия в зацеплении
- •Расчетная нагрузка
- •Лекция №6 Расчет зубчатого зацепления на контактную прочность
- •Проектировочный расчет. Для проектировочного расчета представим ширину зубчатого венца в виде
- •Расчет на изгибную прочность
- •Лекция №7 Передача цилиндрическими колесами с косыми зубьями. Элементы геометрического расчета
- •Усилия в зацеплении
- •Понятие об эквивалентных колесах и определение их размеров
- •Расчет на контактную прочность
- •Расчет на изгибную прочность
- •Лекция №8 Передачи коническими колесами
- •Элементы геометрического расчета
- •Усилия в зацеплении
- •Эквивалентные колеса и определение их параметров
- •Расчет на контактную прочность
- •Расчет на изгибную прочность зубьев конического колеса
- •Потери в зацеплении и определение кпд зубчатых передач
- •Лекция №9 Червячные передачи Общая характеристика
- •Типы червячных передач
- •Геометрические параметры червячной передачи
- •Кинематика червячных передач
- •Усилия в червячной передаче
- •К.П.Д. Червячной передачи
- •Лекция №10 Виды разрушений червячных передач
- •Материалы и конструкция деталей червячной передачи
- •Определение допускаемых напряжений
- •Цилиндрическое колесо эквивалентное червячному
- •Расчет червячной передачи на контактную прочность
- •Расчет червячной передачи по напряжениям изгиба
- •Тепловой расчет червячного редуктора
- •Лекция №11 Ременные передачи Элементы геометрии ременной передачи
- •Длина ремня определяется как сумма прямолинейных участков и дуг охвата
- •Скольжение в ременной передаче
- •Передаточное число ременной передачи
- •С Рис. 11.4 а билы в ременной передаче
- •Нагрузка на валы и опоры
- •Напряжения в ремне
- •Критерии работоспособности ременных передач
- •Лекция №12 Валы и оси
- •Критерии работоспособности осей и валов
- •Выбор расчетных схем и нагрузок
- •Р Рис. 12.4асчет осей
- •Расчет валов
- •Статическая прочность вала
- •Усталостная прочность вала
- •Порядок расчета вала
- •Лекция №13 Гидродинамическая теория трения
- •Виды трения скольжения
- •Гидродинамический эффект
- •Контактно – гидродинамическая теория смазки
- •Подшипники скольжения
- •Критерии работоспособности
- •Расчет подшипников полужидкостного трения
- •Р Рис. 13.10Рис. 13.11асчет подшипников жидкостного трения
- •Лекция №14 Подшипники качения
- •Конструкция и классификация опор качения
- •Критерии работоспособности и расчета подшипников качения
- •Контактные напряжения в деталях подшипников
- •Распределение нагрузки между телами качения
- •Кинематика подшипника качения
- •Лекция №15 Зависимость между грузоподъемностью и долговечностью подшипников качения
- •Подбор подшипников по динамической грузоподъемности
- •Подбор подшипников по статической грузоподъемности
- •Посадки подшипников
- •Смазка подшипников качения
- •Мероприятия по повышению долговечности подшипников
- •Лекция №16 Соединения
- •Резьбовые соединения
- •Классификация резьб
- •Геометрические параметры резьбы
- •Основные типы крепежных деталей
- •Условия самоторможения резьбы
- •Лекция №17 кпд резьбовой пары
- •Распределение нагрузки по виткам резьбы
- •Расчет резьбы на прочность
- •Лекция № 18 Ненапряженные и напряженные резьбовые соединения
- •Ненапряженное соединение
- •Р Рис. 18.2асчет затянутого болта при отсутствии внешней нагрузки
- •Расчет болтового соединения, нагруженного силами, сдвигающими деталь по стыку
- •Расчет болтов, нагруженных эксцентричной нагрузкой
- •Лекция19 Расчет напряжений резьбовых соединений, нагруженных внешней осевой силой
- •Определение податливости болтов и соединяемых деталей
- •Расчет болтов при переменных нагрузках
- •Лекция №20 Конструктивные и технологические мероприятия, повышающие прочность резьбовых соединений
- •Расчет группы болтов
- •Лекция №21 Шпоночные соединения
- •Соединение призматическими и сегментными шпонками
- •Соединение клиновыми шпонками
- •Шлицевые соединения
- •Расчет шлицевых соединений
- •Расчет зубьев на износ
- •Лекция №22 Сварные соединения
- •Виды сварки
- •Виды сварных соединений и типы сварных швов
- •Расчет на прочность нахлестного соединения
- •Допускаемые напряжения
- •Лекция №23 Заклепочные соединения
- •Расчет заклепок
- •Расчет соединяемых деталей
- •Расчет соединений при несимметричном нагружении
- •Заключение
- •Список используемых источников
- •Балякин Валерий Борисович Васин Виталий Николаевич детали машин
- •443056 Самара, пр. Масленникова, 37.
Допускаемые напряжения изгиба
Уравнение кривой усталости по изгибным напряжениям имеет вид
,
Рис. 4.8
Рис. 4.9
Для любой точки кривой усталости по изгибным напряжениям (рис.4.8) можно записать
или
.
Обозначим
- коэффициент долговечности при расчётах
на изгибную прочность, и получим
выражение для допускаемых напряжений
изгиба
,
где SF – коэффициент безопасности при расчётах на изгибную прочность,
SF =1,7…2,2(большее значение для литых заготовок);
КFс – коэффициент, учитывающий условия работы зубьев.
При работе зубьев одной стороной (односторонняя нагрузка) КFс=1 (рис. 4.9). При работе зубьев двумя сторонами (двусторонняя нагрузка – реверсивные передачи, сателлиты)КFс =0,7…0,8(большее значение дляНВ>350).
Для всех сталей базовое число циклов переменных напряжений NFo = 4·106.
Расчётное число циклов переменных напряжений при постоянном режиме работы NFE = 60ncth .
При переменном режиме нагрузки выражение для расчётного числа циклов будет
.
При
малом числе циклов вводится ограничение,
а также
1 КFL 2,08 при НВ 350;
1 КFL 1,63 при НВ > 350.
Так
как
,
то при расчётах используют
и
.
Лекция №5
Передачи цилиндрическими колесами
С прямыми зубьями
Элементы геометрического расчета
Рис.
5.1
ha = m– головка зуба;
hf = 1,25m– ножка зуба.
da = d+2ha = d+2m– диаметр окружности выступов;
df =d-2hf = d-2,5m – диаметр окружности впадин;
db = dw cosw– диаметр основной окружности.
Участок поверхности зуба ниже db очерчен не по эвольвенте.
Рис. 5.2
При нарезании инструментом реечного типа по границе подрезания устанавливается минимально допустимое число зубьев zmin=17.
Нарезание зубьев со смещением (корригирование).
К
Рис.
5.3
E1 = 0,5d = 0,5mz.
Расстояние между начальной и делительной плоскостями инструментальной рейки называется смещением исходного контура
X = E2 -E1 = E2 - 0,5d.
Отношение
называется коэффициентом
смещения исходного контура.
К
Рис.
5.4
Таким образом, x2 = -x1и
x = x1+x2 = 0.
При этом толщина зуба шестерни по делительной окружности увеличивается, а толщина зуба колеса уменьшается, но суммарная их толщина остается постоянной. При угловой коррекции x=x1+x2>0и сумма толщин зубьев по делительной окружности обычно больше, чем у некорригированных колес, поэтому оси колес приходится раздвигать, начальные окружности не совпадают с делительными и угол зацепления увеличен (рис. 5.4). Межосевое расстояние
aw=0,5 (dw2dw1).
Делительное межосевое расстояние
a=0,5(d2d1).
При отсутствии коррекции, если a=aw, то =w, где - угол профиля производящей рейки.
В соответствии с ГОСТ 13755-81 =20. Увеличениеприводит к увеличению толщины зуба у основания, а следовательно, и к увеличению его прочности. Поэтому в авиации применяют=22; 25;28; 30.
db=dwcosw
иdb=dcos,отсюдаcosw=cos=
cos.
Рис.
5.5.
В этом случае разность суммарного
коэффициента смещенияxи коэффициента воспринимаемого смещения
определяют значение коэффициента
уравнительного смещенияy=x
-
y.
Изменением на величинуудиаметров вершин колес удается сохранить
неизменным стандартный радиальный
зазор в зацеплении, который равенс=0,25m.
В этом случае
da=d+2 (1+x-y)m; df=d-2(1,25-x)m;
aw=0,5
(dw2dw1)=.