- •Часть III
- •§ 19.2. Закон Кулона. Два точечных заряда qt и q2 в вакууме взаимодействуют друг с другом с силой f, прямо пропорциональной
- •§ 19.3. Напряженность и потенциал электростатического поля.
- •§19.6. Выражение напряженности в виде градиента потенциала.
- •§ 19.8. Выражение градиента потенциала в цилиндрической и сферической системах координат. В цилиндрической системе (обозначения см. На рис. 19.4, а):
- •10. Свободные и связанные заряды. Поляризация вещества.
- •§ 19.12. Вектор электрической индукции . Кроме векторов е и р в электротехнических расчетах используют еще вектор электрической индукции, или вектор электрического смещения d.
- •§ 19.18. Выражение div e в цилиндрической и сферической системах координат.
- •§ 19.20. Граничные условия. Под граничными условиями понимают условия, которым подчиняется поле на границах раздела сред с разными электрическими свойствами.
- •§ 19.21 Поле внутри проводящего тела в условиях электростатики.
- •§ 19.23. Условия на границе раздела двух диэлектриков. На границе раздела двух диэлектриков с различными диэлектрическим проницаемостями выполняются два следующих условия:
- •§ 19.25. Общая характеристика задач электростатики и методов их решения. В зависимости от того, что задано и что определяют, задачи электростатики можно подразделить на три типа.
- •§ 19.35. Емкостные коэффициенты. Вторая группа формул Максвелла. Решим систему (19.48) относительно зарядов, полагая потенциалы φ и коэффициенты α известными:
- •§19.36. Частичные емкости. Третья группа формул Максвелла.
- •§19.37, Поле точечного заряда, расположенного вблизи проводящей сферы.
- •§ 19.38. Поле заряженной оси, расположенной параллельно цилиндру. Рассмотрим две родственные задачи на изображение в диэлектрическом и проводящем цилиндрах.
- •§19.39. Шар в равномерном поле. Если в равномерное поле (направлено сверху вниз: вдоль оси — z), напряженность которого
- •§ 19.40, Проводящий шар в равномерном поле. Для определения
- •§ 19.43. Понятие о плоскопараллельном, плоскомеридианном и равномерном полях. В литературе можно встретить термины «плоскопараллельное поле», «плоскомеридианное поле» и «равномерное
- •§ 19.44. Графическое построение картины плоскопараллельного поля.
- •§ 19.47. Энергия поля системы заряженных тел. Энергия поля, образованного системой п заряженных тел, имеющих потенциалы φ1.... Φn и заряды q1…..Qn
- •§ 19.48. Метод средних потенциалов. Как уже говорилось в электростатическом поле, образованном системой заряженных проводящих тел, все точки поверх-
- •§ 19.49. О расчете электрических полей, создаваемых диэлектриками, сохраняющими остаточную поляризацию при снятии внешнего поля. Поле, которое создает
- •§ 20.3. Первый закон Кирхгофа в дифференциальной форме.
- •§ 20.4. Дифференциальная форма закона Джоуля — Ленца. В гл. 1
- •§ 20.8. Экспериментальное исследование полей. Если форма гра- ничных поверхностей (электродов) сложна, то аналитический расчет
- •§ 21.3. Дифференциальная форма закона полного тока. Соотношение (21.3) пригодно для контура любых размеров, в том числе и для весьма малого.
- •§ 21.7. Выражение проекций ротора в цилиндрической и сферической системах координат. Без вывода приведем выражение проекций
- •§ 21.14. Выражение магнитного потока через циркуляцию вектора-потенциала. Магнитный поток, пронизывающий какую-либо поверхность ,
- •§ 21.17. Задачи, расчета магнитных полей. Рассмотрим некоторые типы
- •§ 21.18. Общая характеристика методов расчета и исследования
- •§ 21.19. Опытное исследование картины магнитного поля. Опытноеисследование картины магнитного поля производят различными методами.
- •§ 21.21. Магнитное экранирование, Положим, что в равномерном магнитном поле напряженностью н0 надо заэкранировать некоторую область пространства, например цилиндрическую, так, чтобы напря-
- •§ 21.26. Магнитное поле намагниченной пленки (ленты). Магнитная пленка
- •§ 21.28. Выражение механической силы в виде производной от энергии маг нитного поля по координате. Положим, что в системе из п контуров с токами
- •§ 22.2. Первое уравнение Максвелла. Первое уравнениеМаксвела записывают следующим образом
- •§ 22.3. Уравнение непрерывности. Линии полного тока
- •§ 22.4. Второе уравнение Максвелла. Второе уравнение Максвелла
- •§ 22. 6 Теорема Умова - Пойнтинга для мгновенных значений.
- •§ 22.7. Теорема Умова —
- •§23.1. Уравнения Максаелла для проводящей среды. Рассмотрим особенности распространения электромагнитной волны в проводящей среде с проводимостью у и магнитной проницаемостью μа.
- •§23.3. Распространение плоской электромагнитной. Волны в однодном проводящем полупространстве. Рассмотрим вопрос о распространении плоской электромагнитной волны в однородной
- •§ 23.7. Неравномерное распределение тока в прямоугольной шине, находящейся в паазу электрической машины. Расположим оси декартовой системы в соответствии
- •§ 23.10. Экранирование в переменном электромагнитном поле.
- •§ 24.2. Плоские волны в однородных и изотропных полупроводящих средах.
- •§ 24.3. Граничные условия на поверхности раздела двух полупроводящих сред
- •§ 24.4. Переходные и релаксационные процессы в несовершенных диэлектриках. Процессы в полупроводящих средах должны удовлетворять уравнению непрерывности: .
- •§24.7. Тензор магнитной проницаемости феррита. Сначала вспомним, что, на зывают прецессией.
- •§ 25.1. Вывод уравнений для Аи φ в переменном электромагнит-
- •§25.3. Комплексная форма записи запаздывающего векторного потенциала. В гл. 21 [см. Уравнение (21.27)] отмечалось, что состав- ляющая векторного потенциала от элемента линейного тока idl
- •§ 25.4. Излучение электромагнитной энергии.
- •§ 26.5. Аналогия между волноводом и линией с распределенными параметрами.
- •§ 27.7. Движение заряженных частиц в кольцевых ускорителях. Циклотрон представляет собой две полые камеры в виде полуцилиндров нз проводящего неферро-
- •§ 28.2. Уравнения магнитной гидродинамики. Систему уравнений магнитной гидродинамики образуют следующие группы уравнений.
- •§ 28.7. Эффект сжатия (пинч-эффект). В цилиндрическом столбе электрической дуги (рис. 28.4) нити тока параллельны'. Каждый элемент этой нити находится в маг-
- •§ 28.9. Принцип работы магнитного гидродинамического генератора. Через канал с большой скоростью V продувают плазму, нагретую до высокой температуры
- •Часть III
§24.7. Тензор магнитной проницаемости феррита. Сначала вспомним, что, на зывают прецессией.
Из .механики известна, что скорость изменения момента количества движения (dM)l(df), вращающегося вокруг своей оси с угловой скоростью ω волчка (гироскопа), равна приложенному к нему вращающему моменту (рис. 24.3, а):
=
"(24.19)
Здесь r—расстояние волчка от вертикальной оси z; F — сила тяжести.
Радиус R вращающегося волчка описывает боковую поверхность конуса. Такое движение называют прецессией.


Если в начало
координат поместить малую, ферритовую
сферу рис. 24.3, в
и постоянное
магнитное поле индукции В0
направить
по оси
z, а малое по амплитуде
§
24.8.
Распространение
плоской волны в гиромагнитной среде.
Положим,
что
в феррите в направлении оси z, вдоль
которой направлено постоянное магнит-
ное
поле индукции B0
распространяется плоская электромагнитная
волна:
частоты ω.
B
соответствии с формулой (24.22)
Угол β увеличивается пропорционально расстоянию z. Среда называется гиротропной (вращающей) потому, что плоскость поляризации волны непрерывно поворачивается с ростом г (эффект Фарадея).
Если электромагнитная волна будет распространяться вдоль оси —z (т. е. встречно постоянному полю В0). то коэффициент с изменит знак, в результате направление вращения плоскости поляризации (если смотреть вслед волне) сохраняется прежним, а не изменится на противоположное, т. е. для гиротропной среды не выполняется принцип взаимности.
Эффект вращения плоскости поляризации волны используется для создания вентильных свойств волноводного тракта, например, в устройстве, называемом
158
циркулятором
(отрезок
волноводного тракта, заполненного
ферритом), с двух сторон
которого находятся поляризаторы. В
волноводе с таким устройством
электромагнитная волна может
проходить только в одном направлении,
а в другом она задерживается
одним из поляризаторов.
Вопросы для самопроверки
1. На какую долю процента скорость света в воздухе (ε = 1,0006) и волновое
противление меньше, чем в вакууме? 2. В некоторой точке диэлектрика Е= iЕm sin ωt Определите H и rot H в этой точке. 3. В некоторой точке диэлектрика H = Hm cos ωt. Определите Е и rot Е в этой точке. 4. При какой частоте амплитуда плотности тока проводимости равна амплитуде плотности тока смещения для сухой почвы, у которой у = 10 -3 Ом -1-м-1? 5. Каковы особенности распространения электромагнитных волн в полупроводящей среде и в гиротропной среде? 6. Из формул для ZВ, vф и коэффициента распространения для полупроводящей среды получите формулы соответствующих величин для диэлектрика и для проводящей среды. 7.Из граничных условий для полу проводя щей среды получите граничные условия для диэлектрика и для проводящей среды. 8. Решите задачи: 22.15; 22.16; 22.17;22.46;22.47
ГЛАВА ДВАДЦАТЬ ПЯТАЯ .
ЗАПАЗДЫВАЮЩИЕ ПОТЕНЦИАЛЫ ПЕРЕМЕННОГО
электромагнитного поля и излучение
ЭЛЕКТРОМАГНИТНОЙ ЭНЕРГИИ
