- •Основы металловедения
- •1.1. Кристаллические решетки металлов
- •1.2. Реальное строение металлических кристаллов
- •1.3. Анизотропия кристаллов
- •1.4. Кристаллизация металлов
- •1.5. Аллотропия (полиморфизм) металлов
- •Кристаллическое строение сплавов
- •1.7. Свойства металлов и сплавов
- •1.8. Железо и его сплавы
- •1.8.1. Фазы в железоуглеродистых сплавах
- •1.8.2. Диаграмма состояния железо — цементит
- •1.8.3. Применение диаграммы Fe—Fe3c
- •1.8.4. Основные виды термической обработки стали
- •1.8.5. Поверхностная закалка стали
- •1.8.7. Диффузионное насыщение сплавов металлами и неметаллами
- •1.8.8. Лазерная термическая обработка
- •1.8.9. Классификация углеродистых сталей
- •1.8.10. Стали обыкновенного качества
- •1.8.11. Углеродистые качественные стали
- •1.8.12. Автоматные стали
- •1.8.13. Легированные стали
- •1.8.14. Классификация легированных сталей
- •1.8.15. Маркировка легированных сталей
- •1.8.16. Чугуны
- •1.9.2. Углеродистые инструментальные стали
- •1.9.3. Легированные инструментальные стали
- •1.9.4. Быстрорежущие стали
- •1.9.5. Твердые сплавы
- •1.9.6. Минералокерамика
- •1.9.7. Синтетические сверхтвердые материалы (стм)
- •1.9.8. Абразивные материалы
- •1.9.9. Алмазные инструменты
- •1.10. Цветные металлы и сплавы
- •2. Основы литейного производства
- •2.1. Сущность литейного производства
- •2.2. Литье в песчаные формы
- •2.3. Литейные сплавы и их свойства
- •2.4. Специальные способы литья
- •2.4.1. Кокильное литье
- •2.4.2. Литье в оболочковые формы
- •2.4.3. Литье по выплавляемым моделям
- •2.4.4. Литье под давлением
- •2.4.5. Литье с кристаллизацией под давлением
- •2.4.6. Литье вакуумным всасыванием
- •2.4.7. Центробежное литье
- •2.4.8. Литье выжиманием
- •2.4.9. Электрошлаковое литье (эшл)
- •2.4.10. Получение отливок методом направленной кристаллизации
- •2.4.11. Обеспечение технологичности литых деталей
- •2.4.12. Технологичность конструкции отливок
- •2.4.13. Выбор способов литья
- •3. Обработка металлов давлением
- •3.1. Понятие о механизме пластического деформирования при обработке давлением
- •3.2. Нагрев металла для обработки давлением
- •3.3. Нагревательные устройства
- •3.4. Прокатное производство
- •3.4.1. Сущность процесса
- •3.4.2. Продукция прокатного производства
- •3.4.3. Инструмент и оборудование для прокатки
- •3.4.4. Производство бесшовных и сварных труб
- •3.4.5. Производство специальных видов проката
- •3.5. Волочение
- •3.6. Прессование
- •3.7. Ковка
- •3.7.1. Основные операции свободной ковки
- •3.7.2. Оборудование для ковки
- •3.7.3. Типы поковок
- •3.8. Горячая объемная штамповка
- •3.8.1. Сущность процесса
- •3.8.2. Конструкции штампов
- •3.8.3. Основные этапы технологического процесса горячей объемной штамповки
- •3.8.4. Оборудование для горячей объемной штамповки
- •3.9. Холодная объемная штамповка
- •3.9.1. Холодное выдавливание
- •3.9.2. Холодная высадка
- •3.9.3. Холодная формовка
- •3.10. Листовая штамповка
- •3.10.1. Разделительные операции листовой штамповки
- •3.10.2. Формоизменяющие операции листовой штамповки
- •3.10.3. Штампы для холодной листовой штамповки
- •3.10.4. Оборудование для холодной листовой штамповки
- •4. Сварка и пайка металлов
- •4.1. Физические основы образования сварного соединения
- •4.2. Классификация видов сварки
- •4.3. Свариваемость металлов и сплавов
- •4.4. Термические виды сварки
- •4.4.1. Источники теплоты при дуговой сварке
- •4.4.2. Электронно- и ионно-лучевой нагрев
- •4.4.3. Световые источники нагрева
- •4.4.4. Газовое пламя
- •4.4.5. Ручная дуговая сварка
- •4.4.6. Автоматическая дуговая сварка под флюсом
- •4.4.7. Дуговая сварка в защитном газе
- •4.4.8. Электрошлаковая сварка
- •4.4.9. Газовая сварка
- •4.4.10. Плазменная сварка
- •4.4.11. Электронно-лучевая сварка
- •4.4.12. Лазерная сварка
- •4.5. Термомеханические методы сварки
- •4.5.1. Контактная сварка
- •4.5.2. Конденсаторная сварка
- •4.5.3. Диффузионная сварка
- •4.5.4. Индукционно-прессовая (высокочастотная) сварка
- •4.6. Механические методы сварки
- •4.6.1. Холодная сварка
- •4.6.2. Сварка трением
- •4.6.3. Ультразвуковая сварка
- •4.6.4. Сварка взрывом
- •4.6.5. Магнитоимпульсная сварка
- •4.7. Специальные термические процессы в сварочном производстве
- •4.8. Пайка металлов
- •4.8.1. Основные понятия и определения
- •4.8.2. Способы пайки
- •4.8.3. Технологический процесс пайки
- •4.9. Контроль качества сварных и паяных соединений
- •4.9.1. Дефекты сварных и паяных соединений
- •4.9.2. Методы контроля качества сварных и паяных соединений
- •5. Основы размерной обработки заготовок деталей машин
- •5.1. Основы механической обработки резанием
- •5.1.1. Сущность обработки резанием
- •5.1.2. Усадка стружки и наростообразование при резании
- •5.1.3. Силы резания
- •5.1.4. Тепловые явления при резании
- •5.1.5. Износ и стойкость режущего инструмента
- •5.1.6. Влияние вибраций и технологической наследственности на качество обработанных поверхностей
- •5.1.7. Производительность обработки
- •5.1.8. Основные способы обработки резанием
- •5.1.9. Параметры технологического процесса резания
- •5.1.10. Геометрические параметры токарных резцов
- •5.1.11. Определение параметров режима резания
- •5.1.12. Металлорежущие станки. Классификация металлорежущих станков
- •5.1.13. Движения в металлорежущих станках
- •5.1.14. Структура металлорежущего станка
- •5.1.15. Передачи, применяемые в станках
- •5.1.16. Кинематика станков
- •5.1.17. Приводы главного движения и подач
- •5.1.18. Технологические возможности токарной обработки
- •5.1.19. Технологические возможности обработки заготовок на сверлильных станках
- •5.1.20. Технологические возможности фрезерования
- •5.1.21. Технологические возможности строгания
- •5.1.22. Технологические возможности протягивания
- •5.1.23. Технологические возможности шлифования
- •5.1.24. Хонингование
- •5.1.25. Суперфиниширование
- •5.2. Основы физико-химических методов размерной обработки
- •5.2.1. Электрофизические способы обработки
- •5.2.2. Физико-химические способы обработки
- •5.1.24. Хонингование……………………………..259
- •5.2. Основы физико-химических методов размерной обработки……………………………262
- •Технологические процессы
- •394026 Воронеж, Московский просп., 14
ФГБОУВПО «Воронежский государственный
технический университет»
В.И. Корнеев Ю.С. Ткаченко
ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ
МАШИНОСТРОИТЕЛЬНОГО
ПРОИЗВОДСТВА
Утверждено Редакционно-издательским советом
университета в качестве учебного пособия
Воронеж 2011
УДК 620.22
Корнеев В.И. Технологические процессы машиностроительного производства: учеб. пособие / В.И. Корнеев, Ю.С. Ткаченко. Воронеж: ФГБОУВПО «Воронежский государственный технический университет», 2011. 283 с.
В учебном пособии представлены разделы дисциплины «Технологические процессы машиностроительного производства», включающие вопросы по основам металловедения и термической обработки, литейному производству, обработке металлов давлением, сварочному производству и основам размерной обработки заготовок деталей машин. Издание соответствует рабочей программе дисциплины, установленной Советом ВГТУ для специальности 230104 «Системы автоматизированного проектирования».
Учебное пособие подготовлено в электронном виде в текстовом редакторе MS Word XP и содержится в файле
Пособие ТПМП_2011.doc.
Табл. 2. Ил. 89. Библиогр.: 7 назв.
Научный редактор профессор В.М. Пачевский
-
Рецензенты:
кафедра технологии конструкционных материалов, метрологии, стандартизации и сертификации Воронежского государственного аграрного университета (зав. кафедрой д-р техн. наук, проф. В.К. Астанин);
канд. техн. наук, проф. Ю.С. Скрипченко
© Корнеев В.И., Ткаченко Ю.С., 2011 |
© Оформление. ФГБОУВПО «Воронежский государственный технический университет», 2011 |
ВВЕДЕНИЕ
Получение, разработка новых материалов, способы их обработки являются основой современного производства и во многом определяют уровнем своего развития научно-технический и экономический потенциал страны. Проектирование рациональных, конкурентоспособных изделий, организация их производства невозможны без должного технологического обеспечения и достаточного уровня знаний в области материаловедения и технологии. Последние являются важнейшим показателем образованности инженера в области техники.
Создавая конструкции машин и приборов, обеспечивая на практике их заданные характеристики и надежность работы с учетом экономических показателей, инженер должен уверенно владеть методами изготовления деталей машин и их сборки. Для этого он должен обладать глубокими технологическими знаниями.
Предметом курса «Технологические процессы машиностроительного производства» являются современные рациональные и распространенные в промышленности прогрессивные методы формообразования заготовок и деталей машин. Содержание курса представлено на принципе единства основных, фундаментальных методов обработки конструкционных материалов: литья, обработки давлением, сварки и обработки резанием.
Изучение технологических процессов невозможно без наличия определенной суммы знаний о строении и свойствах конструкционных материалов и методов их получения. Комплекс этих знаний обеспечивает универсальный подход к изучению технологии.
Основы металловедения
Первое определение металлов дал М. В. Ломоносов: «Металлы суть светлые тела, которые ковать можно». Кроме металлического блеска и пластичности, металлы обладают также высокой электропроводностью и теплопроводностью.
Зная строение и свойства металлов, можно на строго научной основе выбрать металлы и их сплавы для изготовления различных деталей и конструкций, установить наиболее правильные режимы различных технологических процессов термической обработки, ковки, штамповки, литья, сварки и т. д.
1.1. Кристаллические решетки металлов
Металлы — тела кристаллические, атомы которых располагаются в геометрически правильном порядке, образуя кристаллы, в отличие от аморфных тел (например, стекло, смола), атомы которых располагаются беспорядочно.
Располагаясь в металлах в строгом порядке, атомы в плоскости образуют атомную сетку, а в пространстве — атомно-кристаллическую решетку (рис. 1.1).
а |
б |
в |
Рис. 1.1. Элементарные кристаллические ячейки: а — кубическая объемноцентрированная; б — кубическая гранецентрированная; в — гексагональная плотноупакованная |
Типы кристаллических решеток у различных металлов различные. Наиболее часто встречаются решетки: кубическая объемноцентрированная, кубическая гранецентрированная и гексагональная.
Элементарные ячейки таких кристаллических решеток показаны на рис. 1.1. Размеры кристаллической решетки характеризуются ее параметрами, измеряемыми в ангстремах Å
(lÅ = 10 -8 см или 1Å = 0,1 нм). Параметр кубической решетки характеризуется длиной ребра куба, обозначается буквой а и лежит в пределах 2,8...6 Å (0,28...0,6 нм). Для характеристики гексагональной решетки принимают два параметра — сторону шестигранника а и высоту призмы с.
1.2. Реальное строение металлических кристаллов
Необходимо отметить, что не по всему объему кристалла (кристаллической решетки) сохраняется такой порядок в расположении атомов (упаковка), как это было показано при описании элементарных ячеек кристаллической решетки.
В действительности имеется некоторое отступление от такого идеального порядка в упаковке атомов в кристаллической решетке. Как известно, атомы находятся в колебательном движении возле узлов решетки. Чем выше температура, тем больше амплитуда этих колебаний. Хотя большинство атомов металла в данной кристаллической решетке обладает одинаковой (средней) энергией и колеблется при данной температуре с одинаковой амплитудой, отдельные атомы имеют энергию, значительно превышающую среднюю энергию.
Такие атомы имеют не только амплитуду колебаний, большую, чем средняя, но могут вообще перемещаться из одного места в другое (из узла в междоузлие). Такой, вышедший из нормальной позиции (узла решетки) атом, называется дислоцированным (рис. 1.2). Место, где находился такой атом, остается в решетке незаполненным и называется вакансией. Вакансии и дислоцированные атомы представляют собой точечные дефекты и вызывают искажения кристаллической решетки (рис. 1.2). Они не остаются неподвижными, а непрерывно перемещаются.
а б
Рис. 1.2. Искажения кристаллической решетки около
дислоцированного атома (а) и около вакансии (б)
При перемещении по кристаллической решетке вакансии могут встречаться друг с другом и объединяться с образованием пустоты (рис. 1.3, а). Скопления вакансий способны перерождаться в другой вид несовершенства кристаллического строения – так называемые дислокации (рис. 1.3, б).
а б
Рис. 1.3. Один из случаев образования дислокации
из скопления вакансий
Этот дефект является линейным, потому что распространяется в длину, существуют также и винтовые дислокации. Кроме образования из вакансий, дислокации возникают также при образовании кристаллов и в процессе пластической деформации.
Количество и характер распределения дефектов кристаллической решетки оказывают влияние на физико-механические свойства металлов и сплавов.