Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700347.doc
Скачиваний:
23
Добавлен:
01.05.2022
Размер:
3.31 Mб
Скачать

8. Основы физики ядра

8.1. Основные свойства и строение ядра

Ядро - центральная часть атома, в которой сосредото- чена практически вся масса атома и его положительный электрический заряд. Все ядра состоят из протонов (р) и нейтронов (n), которые считаются двумя зарядовыми состояниями одной частицы – нуклона. Протон имеет положи- тельный заряд, равный по величине заряду электрона. Нейтрон не имеет заряда.

Ядро химического элемента обозначают , где X – символ химического элемента, Z – порядковый номер в таблице Менделеева, равный числу протонов в ядре, А - массовое число, равное числу нуклонов (протонов и нейтронов) в ядре, следовательно, число нейтронов в ядре N = A - Z, заряд ядра . Ядра с одинаковыми Z, но различным А называются изотопами (например , - изотопы водорода).

Размер ядра характеризуется радиусом, равным

, (8.1)

где .

Плотность ядерного вещества постоянна для всех ядер и составляет ≈ .

Между нуклонами в ядре существует сильное ядерное взаимодействие, обеспечивающее устойчивость ядер несмотря на отталкивание одноименно заряженных протонов. Ядерные силы являются короткодействующими и проявляются лишь на расстояниях между нуклонами порядка . Они обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от их зарядового состояния. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь c ограниченным числом ближайших к нему соседей. Наконец, ядерные силы не являются центральными и зависят от ориентации взаимодействующих нуклонов.

Одной из важнейших величин, характеризующих прочность ядра, является энергия связи ядра. Она определя- ется работой, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны. Мерой энергии связи ядра служит дефект массы, характеризующий уменьшение суммар- ной массы при образовании ядра из составляющих его нуклонов

,

или

(8.2)

где и - массы протона и нейтрона, - масса водорода, - масса ядра, -масса атома.

Энергия связи, приходящаяся на один нуклон

, (8.3 )

называется удельной энергией связи. Она зависит от массово- го числа элемента. Для легких ядер удельная энергия связи круто возрастает до 6-7 МэВ, затем более медленно возраста- ет до максимальной величины 8.7 МэВ у элементов с А=50-60, а потом постепенно уменьшается у тяжёлых элемен- тов. Таким образом, наиболее устойчивыми с энергетической точки зрения являются ядра средней части таблицы Менделеева. Это означает, что энергетически выгодно как деление тяжёлых ядер на более лёгкие, так и слияние лёгких ядер в более тяжёлые.

8.2. Радиоактивность. Закон радиоактивного распада

Под радиоактивностью понимается способность некото- рых изотопов одного химического элемента самопроизвольно превращаться в изотопы другого элемента с испусканием различных видов излучений. Атомное ядро, испытывающее радиоактивный распад, называется материнским, возникаю- щее ядро – дочерним. К основным типам радиоактивности относят - и - распад.

Альфа-распад является свойством тяжёлых ядер (А>200), внутри которых происходит обособление двух протонов и двух нейтронов (α - частицы) и их вылет из ядра. Правило смещения, в основе которого лежат законы сохране- ния заряда и массового числа, позволяет установить, какое ядро возникает при распаде данного материнского ядра

, ( 8.4)

где - ядро гелия (α-частица).

Энергетическая схема α - распада представлена на рисунке.

Видно, что α - частицы имеют определённые значения энергии. Это связано с тем, что ядра обладают дискретными энергетическими уровнями и возникающее дочернее ядро, как правило, оказывается в различных возбуждённых состояниях (ΔΕ – превышение энергии дочернего ядра и α частицы над энергией покоя дочернего ядра). Его переход в основное состояние сопровождается γ - излучением.

К β - распаду относятся электронный ( ) и позитрон- ный ( ) распады, а также электронный захват (К - захват), которые подчиняются следующим правилам смещения:

- распад

- распад

К – захват

где - электрон, - позитрон (античастица электрона).

Данные распады происходят путём самопроизвольного превращения одного вида нуклона в ядре в другой (нейтрона в протон или протона в нейтрон). Эти превращения соверша- ются по схемам

где и -электронные нейтрино и антинейтрино, имеющие нулевой заряд и весьма малую массу.

В случае К – захвата превращение протона в нейтрон происходит по схеме

и заключается в том, что протон как бы “захватывает” один из электронов на ближайшей к ядру К - оболочке атома. При этом, электронный захват сопровождается характеристическим рентгеновским излучением, обусловленным переходом электронов атома с вышестоящих оболочек на К- оболочку.

Энергетический спектр - частиц является непрерыв- ным что связано с хаотическим распределением уносимой энергии между -частицей и нейтрино. - распад также сопровождается -излучением, испускаемым дочерним ядром при его переходе в основное состояние.

Самопроизвольный распад атомных ядер подчиняется закону радиоактивного распада

, (8.5)

где - начальное число ядер, N - число не распавшихся ядер в момент времени t, - постоянная радиоактивного распада.

Промежуток времени, за который распадается половина первоначального количества ядер, называется периодом полураспада. Согласно (8.5)

. (8.6)

Среднее время жизни радиоактивного изотопа является величиной, обратной постоянной радиоактивного распада, т.е.

. (8.7)

Интенсивность радиоактивного распада характеризует активность распада

(8.8)

Данная величина представляет собой число распадов радиоактивного вещества за единицу времени. Активность, отнесённая к единице массы вещества, называется удельной активностью.

Единица активности в СИ - беккерель (Бк) - активность, при которой за 1с происходит один акт распада. Внесистемная единица активности–Кюри (Ки):

1 Ки = Бк.