Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700347.doc
Скачиваний:
23
Добавлен:
01.05.2022
Размер:
3.31 Mб
Скачать

5.3.6. Дифракция Фраунгофера на решётке

Дифракционная решётка представляет собой систему, состоящую из большого числа одинаковых по ширине и параллельных друг другу щелей, лежащих в одной плоскости и разделённых непрозрачными промежутками, равными по ширине (рис. 5.21)

Рис.5.21

Расстояние между соседними щелями называется периодом дифракционной решётки:

, (5.46)

где - ширина щели, - ширина непрозрачного промежутка.

При освещении решётки монохроматическим светом дифракционная картина на экране усложняется (по сравнению с одной щелью) за счет интерференции света от различных щелей.

Пусть монохроматическая волна падает на поверхность решётки по нормали (рис. 5.21). Колебания во всех точках щелей происходят в одной фазе, так как они принадлежат одной волновой поверхности. Найдём амплитуду световой волны в точке M экрана, в которой собираются лучи от всех щелей, дифрагированные под углом .

В одном и том же направлении все щели излучают свет одинаково, то есть все амплитуды равны. Колебания от сходственных точек соседних щелей в точке M будут усиливать друг друга, если на их разности хода будет укладываться в соответствии (5.11) чётное число полуволн или целое число длин волн.

Таким образом, положение главных максимумов определяется формулой

, (5.47)

где определяет порядок максимума.

Амплитуда колебаний в этой точке экрана равна

,

где - амплитуда колебания, посылаемого одной щелью под углом .

Для направлений, удовлетворяющих условию

, (5.48)

которое является условием минимума дифракции для одной

щели, все равны нулю. Поэтому амплитуда результи- рующего колебания в соответствующей точке экрана также равна нулю. Таким образом, условие (5.48) минимума для одной щели является также условием минимума дифракции для решётки.

Кроме главных минимумов, определяемых условием (5.48), в промежутках между соседними главными максимумами имеется по (N-1) - му добавочному минимуму. Эти минимумы возникают в тех направлениях, для которых колебания от отдельных щелей взаимно погашают друг друга. Направление добавочных минимумов определятся условием

, (5.49)

где принимает все целочисленные значения ( ) кроме .

Между дополнительными минимумами располагаются слабые вторичные максимумы. Число таких максимумов, находящихся в промежутке между соседними главными максимумами, равно (N-2).

Дифракционная картина, полученная от решётки с N = 4 и , изображена на рис. 5.22.

Рис. 5.22

При пропускании через решётку белого света все максимумы, кроме центрального разложатся в спектр, фиолетовый конец которого расположен к центру дифракцион- ной картины, красный – наружу. Дифракционная решётка является спектральным прибором, предназначенным для анализа спектрального состава исследуемого излучения. Качество спектрального прибора характеризуется дисперсией и разрешающей силой.

Дисперсия характеризует ширину спектра, получаемого дифракционной решёткой. Различают угловую и линейную дисперсию. Угловая дисперсия определяет угловое расстояние между двумя спектральными линиями, отличающимися по длине волны на :

(5.50)

Линейная дисперсия определяет линейное расстояние в фокальной плоскости между этими линиями

(5.51)

где F – фокусное расстояние линзы, d – период дифракцион- ной решётки, к – порядок максимума.

Из представленного выражения следует, что дисперсия обратно пропорциональна периоду решётки и прямо пропорциональна порядку спектра.

Разрешающая сила характеризует свойства дифракцион- ной решётки разделять излучения близкие по длине волны и определяется выражением

, (5.52)

где - минимальное различие в длине волны, которое может быть обнаружено, N – число щелей дифракционной решётки.

Таким образом, разрешающая сила дифракционной решётки пропорциональна порядку спектра и числу щелей.