Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700347.doc
Скачиваний:
23
Добавлен:
01.05.2022
Размер:
3.31 Mб
Скачать

2. Электромагнитная индукция

2.1. Законы электромагнитной индукции

В 1831 г. Фарадей экспериментально открыл явление электромагнитной индукции, состоящее в возникновении электрического тока в замкнутом проводнике при изменении магнитного потока, охватываемого контуром проводника. Возникающий ток назвали индукционным.

Правило, определяющее направление индукционного тока, было сформулировано Ленцем: индукционный ток всегда направлен так, что создаваемое им магнитное поле противодействует изменению магнитного потока, вызвав- шего этот ток.

Появление индукционного тока в проводящем контуре свидетельствует о том, что при изменениях магнитного потока Ф в контуре возникает электродвижущая сила индукции. Фарадей установил, что величина ЭДС не зависит от способа, которым осуществляется изменение магнитного потока и определяется лишь скоростью его изменения:

(2.1)

Если контур состоит из N витков, то

(2.2)

где Ψ – полный магнитный поток, или потокосцепление.

Выясним причину возникновения электромагнитной индукции. Для этого рассмотрим два случая, в каждом из которых физический механизм явления существенно разный.

1. Подвижный контур в стационарном магнитном поле.

Обратимся к контуру с подвижной перемычкой длиной l, находящемся в однородном магнитном поле, перпендикуляр- ном плоскости контура ( рис.2.1).

Рис.2.1

Приведем перемычку в движение со скоростью υ. С той же скоростью станут перемещаться относительно поля и носители тока в перемычке – электроны. На каждый электрон при этом будет действовать сила Лоренца, равная

. (2.3)

Электроны начнут перемещаться и создадут электриче- ское поле, которое возбудит ток и в остальных участках контура. Если силу F разделить на величину заряда, получим напряженность стороннего поля:

. (2.4)

По определению электродвижущей силы, она равна интегралу от напряженности стороннего электрического поля по замкнутому контуру, т. е. циркуляции вектора E:

,

учитывая, что , а , получим

где dФ – “заметаемый” проводником за время dt магнитный поток.

2. Неподвижный контур в переменном магнитном поле

Рассмотрим теперь неподвижный замкнутый проводник, находящийся в переменном магнитном поле. Поскольку сила Лоренца в этом случае отсутствует, а других сил, действую- щих на заряды, кроме электрической, нет, то остается предположить, что при изменениях магнитного поля индукционный ток обусловлен возникающим в проводнике электрическим полем Е. Согласно Максвеллу, изменяющееся во времени магнитное поле приводит к появлению в пространстве вихревого электрического поля независимо от наличия контура. Контур лишь позволяет обнаружить по току существование электрического поля. Циркуляция вектора Е по контуру определяет ЭДС электромагнитной индукции

(2.5)

Так как а контур и поверхность неподвижны, то

(2.6)

В заключении отметим, что несмотря на различие механизмов возникновения ЭДС, закон электромагнитной индукции (2.1) выполняется в обоих случаях.