
- •Часть 1
- •Часть 1
- •Введение
- •1. Основные понятия теории графов
- •Задачи теории графов
- •1.2. Основные определения
- •1.3. Степени вершин графа
- •1.4. Изоморфизм графов
- •2. Представление графов в эвм и операции над ними
- •2.1. Матричные способы задания графов
- •2.2. Список ребер (луг) и структура смежности графа
- •2.3. Части графов
- •2.4. Основные операции над графами
- •3. Маршруты в графах
- •3.1. Понятие маршрута
- •Маршруты в неориентированных графах
- •Маршруты в ориентированных графах
- •3.2. Связность в графах.
- •В примере 3 граф имеет две сильно связных компоненты.
- •3.3. Связность и матрица смежности графа
- •3.4. Матрица взаимодостижимости
- •4. Деревья
- •4.1. Свободные деревья
- •4.2. Ориентированные, упорядоченные и бинарные деревья
- •Эквивалентное определение ориентированного дерева
- •5. Эйлеровы и гамильтоновы графы.
- •5.1. Эйлеровы графы.
- •5. 2. Алгоритм построения эйлерова цикла в эйлеровом графе
- •5.3. Гамильтоновы графы
- •5.4. Оценки числа эйлеровых и гамильтоновых графов
- •6. Фундаментальные циклы и разрезы
- •6.1. Фундаментальные циклы
- •6.2. Разрезы
- •7. Связь теории графов с бинарными отношениями и векторными пространствами
- •7.1. Отношения на множествах и графы
- •7.2. Векторные пространства, связанные с графами
- •8. Планарность и раскраска графов
- •8.1. Планарные графы
- •8.2. Раскраска графов
- •8.3. Алгоритм последовательной раскраски
- •9. Покрытия и независимость
- •9.1. Покрывающие множества вершин и ребер
- •9.2. Независимые множества вершин и ребер
- •9.3. Доминирующие множества
- •10. Кратчайшие маршруты в графах
- •10.1. Расстояния в графах
- •10.2. Алгоритм Форда-Беллмана
- •11. Задача коммивояжера
- •11.1. Постановка задачи
- •11.2. Обходы вершин графа по глубине и ширине
- •11.3. Решение задачи коммивояжера
- •12. Потоки в сетях
- •12.1. Основные определения
- •12.2. Теорема Форда и Фалкерсона
- •12.3. Алгоритм построения максимального потока
- •13. Сетевое планирование и управление
- •13.1. Элементы сетевого графика
- •13.2. Временные параметры сетевого графика
- •13.3. Распределение ограниченных ресурсов
- •14. Анализ технических систем (на примере электрической цепи)
- •14.1 Закон Кирхгофа
- •14.2. Основные уравнения
- •15. Сигнальные графы
- •15.1. Общие представления о сигнальных графах
- •15.2. Преобразования сигнальных графов
- •15.3. Формула Мэзона
- •16. Переключательные сети (схемы)
- •17. Математические машины и цепи маркова
- •Библиографический список
- •Оглавление
- •Часть 1
- •394026 Воронеж, Московский просп., 14
3. Маршруты в графах
3.1. Понятие маршрута
Маршрутом в графе G=(V,E) называется чередующаяся последовательность вершин и ребер (дуг) – v1, e1, v2, e2, …., vn, en,vn+1, в которой любые два соседних элемента инциденты.
Маршрут, соединяющий вершины v1 и vn+1 можно также задать последовательностью из одних вершин v1, v2, v3,…,vn, vn+1 или последовательностью ребер e1, e2,…,en. Число n ребер (или дуг) в маршруте называется его длиной. Маршрут называется циклическим, если v1=vn+1.
Маршруты в неориентированных графах
Маршрут в неорграфе называется цепью, если все его ребра различны. Цепь называется простой, если все её вершины, кроме возможно первой и последней, различны. Циклическая цепь называется циклом, а простая циклическая цепь – простым циклом.
Неорграф
без циклов называется ациклическим
графом.
Минимальная из длин циклов неорграфа
называется его обхватом.
Пример 1: Рассмотрим неорграф
Рис. 9
В данном примере наборы вершин: (1,2); (1,2,4,7) являются простыми цепями,: (1,2,4,7,8,4) - непростая цепь, (1,2,4,7,8,4,2) – маршрут, который не является цепью, (1,2,4,8,4,1) – непростой цикл, (1,2,4,1) – простой цикл. Обхват графа равен 3.
Маршруты в ориентированных графах
Маршрут ориентированного графа называется путем, если все его дуги различны.
Путь
называется контуром, если v1=vn+1.
Граф не имеющий контуров называется
безконтурным. Вершина v
называется достижимой
из вершины u,
если существует путь из u
в v.
Пример 2: Рассмотрим ориентированный граф
Рис. 10
В данном примере наборы вершин (1,2,3,1) образуют контур. Заметим, что здесь вершина 5 – достигается из любой другой вершины, а из вершины 5 не достигается ни одна из остальных вершин.
3.2. Связность в графах.
Неорграф называется связным, если любые две его несовпадающие вершины соединены маршрутом. Граф называется связным, если соответствующий ему неорграф является связным. В данном случае соответствующий неориентированный граф получается из исходного графа путём замены всех его дуг рёбрами. Граф называется сильно связным, если для каждой пары различных вершин u и v существуют маршруты (u,v) и (v,u). Из этого определения следует, что любой связный неорграф является также сильно связным. Понятии связности и сильной связности распространяются также и на мультиграфы.
Отметим, что граф в примере 1 является сильно связным, а в приме2 – не сильно связный граф.
Пример 3. На следующем рисунке показан несвязный граф.
Р
ис.
11
Всякий максимальный по включению сильно связный подграф данного графа называется его сильно связной компонентой, или сильной компонентой связности.
В примере 3 граф имеет две сильно связных компоненты.
3.3. Связность и матрица смежности графа
Теорема 1. Любой граф представляется в виде объединения непересекающихся (сильно) связных компонент. Разложение графа на (сильно) связные компоненты определяется однозначно.
Таким образом, множество вершин связных компонент, а также сильных компонент образуют разбиение множества вершин графа, причем число с(G) связных компонент графа G определяется однозначно.
Теорема 2. Если A матрица смежности графа G, то (i, j) элемент матрицы Ak=A·A·A··…·A (k раз), есть число (vi, vj) маршрутов длины k.
Следствие 1. В графе G мощности n тогда и только тогда существует маршрут (vi, vj) , причем vi ≠vj , когда (i, j) – элемент матрицы A+A2+ A3+ A4+…+ An-1 не равен нулю.
Следствие 2. В графе G мощности n тогда и только тогда существует цикл, содержащий вершину vi когда (i, i) – элемент матрицы A+A2+ A3+ A4+…+ An-1+An не равен нулю.
Пример. При помощи матрицы смежности определим существование всевозможных (1, 3) - маршрутов в графе, изо браженном на рисунке.
Рис. 12
П
о
графу находим матрицу смежности A:
A=
.
Её элемент (1,3)=0, следовательно. (1, 3) маршрутов длины 1 в графе нет. Затем находим:
A2=
*
=
.
В этой матрице элемент (1,3)=0, т.е. (1, 3) маршрута длины 2 в графе нет. Далее
A3=
A2·A
=
·
=
Eё элемент (1, 3)=1, т.е. существует ровно один (1, 3) - маршрут длины 3. Этот маршрут определяется набором вершин (1, 4, 2, 3)
Эту последовательность вершин можно найти на основе перемножения матрицы смежности: Элемент (1, 3) матрицы A3 получается при перемножении элемента (1, 2) матрицы A2 на элемент (2, 3) матрицы A. В свою очередь элемент (1, 2) матрицы A2 образуется при перемножении элемента (1, 4) матрицы A на элемент (4, 2) матрицы A, т.е. следовательно, двигаясь от 1 к 3 за 3 шага, получаем маршрут (1,4, 2, 3).
В матрице A3 элемент (4, 2) равен 3, это значит, что существуют три (4,2) маршрута длины 3 : (4, 1, 4, 2), (4, 2, 4, 2), (4, 2, 3, 2).