- •Введение
- •1. Предмет коллоидной химии, её место среди естественнонаучных
- •2. Признаки объектов коллоидной химии
- •3. Краткий исторический очерк
- •Глава 1 особенности строения поверхностного слоя. Поверхностное натяжение
- •1.1. Поверхностная энергия Гиббса. Поверхностное натяжение
- •1.2. Пути уменьшения свободной поверхностной энергии
- •1.3. Поверхностно-активные вещества
- •1.4. Классификация поверхностно-активных веществ
- •1.5. Применение поверхностно-активных веществ
- •1.6. Изотерма поверхностного натяжения. Уравнение
- •1.7. Свойства пав: поверхностная активность, гидрофильно-
- •1.8. Мицеллообразование в растворах мпав. Критическая
- •1.9. Липосомы
- •Глава 2 когезия. Адгезия. Смачивание
- •2.1. Когезия
- •2.2. Адгезия
- •2.3. Смачивание. Растекание
- •2.4. Инверсия смачивания
- •Глава 3 адсорбция
- •3.1. Общие понятия
- •3.2. Адсорбция на поверхности раздела “жидкость - газ”
- •3.3. Адсорбция на поверхности раздела «жидкость – жидкость»
- •3.4. Адсорбция на поверхности раздела «твёрдое тело – газ»
- •3.4.1. Мономолекулярная адсорбция. Уравнение Лэнгмюра
- •3.4.2. Уравнение Фрёйндлиха
- •3.4.3. Полимолекулярная адсорбция. Капиллярная конденсация
- •3.5. Адсорбция на поверхности раздела «твёрдое тело – жидкость»
- •3.5.1. Молекулярная адсорбция
- •3.5.2. Адсорбция из водных растворов электролитов
- •3.5.3. Влияние природы адсорбирующихся ионов
- •Уменьшение гидратированности
- •У величение адсорбируемости:
- •3.5.4. Влияние природы адсорбента
- •3.5.5. Образование двойного электрического слоя
- •3.5.6. Обменная адсорбция
- •3.5.6.1. Иониты
- •3.6. Хроматография
- •3.6.1. Общие представления и классификация хроматографических методов
- •3.6.2. Газовая хроматография
- •3.6.3. Жидкостная хроматография
- •3.6.3.1. Адсорбционная хроматография
- •3.6.3.2. Распределительная хроматография
- •3.6.3.3. Аффинная хроматография
- •3.6.3.4. Эксклюзионная хроматография
- •3.6.3.5. Ионообменная хроматография
- •3.6.4.1. Осадочная хроматография
- •Глава 4 получение и очистка дисперсных систем
- •4.1. Классификация
- •4.2. Получение
- •4.2.1. Диспергационные методы
- •4.2.2. Конденсационные методы
- •4.2.3. Комбинированные методы
- •4.3. Очистка коллоидных растворов
- •Глава 5 двойной электрический слой. Строение мицеллы лиофобных золей
- •5.1. Строение двойного электрического слоя
- •Поверхность скольжения
- •5.2. Влияние на двойной электрический слой разбавления
- •5.3. Строение мицеллы лиофобных золей
- •5.4. Формула мицеллы
- •5.5. Электрокинетические явления
- •5.6. Экспериментальное определение электрокинетического
- •Глава 6
- •6.1. Виды устойчивости
- •6.2. Факторы агрегативной устойчивости
- •6.3. Коагуляция
- •6.4. Коагуляция под действием электролитов. Порог коагуляции
- •6.5. Теории коагуляции
- •6.7. Коагуляция смесью электролитов
- •6.8. Привыкание
- •6.10. Взаимная коагуляция золей
- •6.11. Коллоидная защита
- •Глава 7
- •7.1. Броуновское движение и диффузия в коллоидных системах
- •7.2. Седиментация и седиментационная устойчивость
- •7.3. Закономерности седиментации в гравитационном поле.
- •7.4. Седиментация в центробежном поле
- •7.5. Седиментационный анализ
- •7.6. Вязкость дисперсных систем
- •7.7. Осмотическое давление дисперсных систем
- •Глава 8
- •8.1. Явления, наблюдаемые при попадании света в дисперсные
- •8.2. Рассеяние света. Уравнение Рэлея
- •8.3. Оптические методы исследования и анализа
- •Глава 9
- •9.1. Суспензии и пасты
- •9.2. Эмульсии
- •9.3. Пены
- •9.4. Аэрозоли
- •9.5. Порошки
- •Глава 10
- •10.1. Классификация высокомолекулярных веществ
- •10.2. Получение, применение и свойства высокомолекулярных
- •10.3. Фазовые и физические состояния полимеров
- •10.4. Набухание
- •10.5. Растворение
- •10.6. Свойства растворов высокомолекулярных веществ
- •10.6.1. Вязкость. Вискозиметрия
- •10.6.2. Осмотическое давление, Осмометрия
- •10.6.3. Мембранное равновесие
- •10.6.4. Оптические свойства
- •10.7. Полиэлектролиты. Белки. Изоэлектрическая точка
- •10.7.1. Методы определения изоэлектрической точки белков
- •10.8. Выделение вмв из растворов. Коацервация
- •10.9. Застудневание
- •10.10. Пластическая вязкость. Уравнение Бингема
- •Глава 11
- •11.1. Классификация и применение гелей и студней
- •11.2. Свойства гелей и студней
- •11.2.1. Тиксотропия
- •11.2.2. Синерезис
- •11.2.3. Диффузия в гелях и студнях
- •11.2.4. Периодические реакции
1.2. Пути уменьшения свободной поверхностной энергии
Любые системы, в том числе и дисперсные, стремятся к равновесию. Из курса физической химии известно, что при этом всегда имеется тенденция к самопроизвольному уменьшению энергии Гиббса G. Это относится и к свободной поверхностной энергии дисперсных систем GS.
При этом в соответствии с уравнением (1.1) уменьшение GS может достигаться такими путями:
а) При неизменной величине поверхностного натяжения за счёт уменьшения межфазной поверхности раздела:
GS = S .
Уменьшение площади поверхности раздела может, в свою очередь, осуществляться тоже двумя способами:
Самопроизвольное принятие частицами такой геометрической формы, которая отвечает минимуму свободной поверхностной энергии. Так, при отсутствии внешних силовых воздействий капля жидкости принимает форму шара.
Объединение (агрегация) мелких частиц в более крупные (агрегаты). В этом случае достигается гораздо бóльший энергетический выигрыш, так как при объединении поверхность раздела фаз уменьшается очень значительно.
Отсюда следует, что, обладая большим запасом поверхностной энергии, дисперсные системы принципиально агрегативно неустойчивы и стремятся к самопроизвольному уменьшению степени дисперсности путём объединения частиц дисперсной фазы.
б) При неизменной площади поверхности раздела фаз за счёт уменьшения поверхностного натяжения:
GS = S .
Во многих случаях, в том числе и при изготовлении лекарственных форм, когда требуется поддержание неизменных размеров частиц дисперсной фазы в системе, уменьшение межфазного поверхностного натяжения является наиболее важным, а часто единственным способом сохранения степени дисперсности.
Уменьшение поверхностного натяжения достигается введением в дисперсную систему поверхностно-активных веществ (ПАВ), которые обладают способностью концентрироваться (адсорбироваться) на поверхности раздела фаз и своим присутствием уменьшать поверхностное натяжение.
1.3. Поверхностно-активные вещества
Способностью понижать поверхностное натяжение обладают органические вещества с несимметричными, дифильными молекулами, в которых имеются как полярные (гидрофильные), так и неполярные (липофильные) группы. Гидрофильные группы (-ОН, -СООН, -SO3H, -NH2 и т. п.) обеспечивают сродство ПАВ в воде, гидрофобные (обычно углеводородные радикалы, как алифатические, так и ароматические) сродство ПАВ к неполярным средам. Собственное поверхностное натяжение ПАВ должно быть меньше, чем у данного твёрдого тела или жидкости. В адсорбционном слое на границе фаз дифильные молекулы ориентируются энергетически наиболее выгодным образом: гидрофильные группы - в сторону полярной фазы, гидрофобные - в сторону неполярной.
Графически молекула ПАВ изображается символом , в котором кружок обозначает гидрофильную группу, а черта - гидрофобную.
1.4. Классификация поверхностно-активных веществ
По размерам молекул ПАВ подразделяют на высокомолекулярные (например, белки) и низкомолекулярные (подавляющее большинство ПАВ, указанных в других типах классификации).
По типу гидрофильных групп различают неионные (неионогенные) и ионные (ионогенные) ПАВ.
Неионогеные существуют в растворе в виде недиссоциированных молекул (например, твины или сорбитали, спирты).
Ионогенные диссоциируют в растворе на ионы, одни их которых собственно и обладают поверхностной активностью, а другие - нет. В зависимости от знака заряда поверхностно-активного иона ПАВ делят на катион-активные, анион-активные и амфотерные.
На практике чаще всего используются анионактивные ПАВ: карбоновые кислоты и их соли (мыла), алкилсульфаты, алкилсульфонаты, алкиларилсульфонаты, фенолы, танниды и др.
Второе место по значению занимают неионные ПАВ - алифатические спирты, их полиоксиэтиленовые эфиры различной природы, липиды.
Значительно меньшая, но постоянно возрастающая доля в производстве ПАВ приходится на катионактивные (главным образом производные алкиламинов, первичных, вторичных и третичных) и амфотерные ПАВ (например, аминокислоты, белки). К катионактивным ПАВ относятся и многие алкалоиды
По поведению в растворе все ПАВ делят на истинно-растворимые и коллоидные (или мицеллообразующие, МПАВ). К первой группе относится большое число хорошо растворимых в воде дифильных органических соединений с небольшими углеводородными радикалами (спирты, фенолы, низшие карбоновые кислоты и их соли, амины). Вещества этого типа существуют в растворе в виде отдельных молекул или ионоввплоть до концентраций, соответствующих их растворимости.
Особый интерес представляют коллоидные поверхностно-активные вещества. Именно они наиболее широко используются на практике, в том числе для стабилизации дисперсных систем и в первую очередь подразумеваются под термином ПАВ. Их главной отличительной особенностью является способность образовывать термодинамически устойчивые (лиофильные) гетерогенные дисперсные системы - мицеллярные растворы ПАВ. Минимальное число атомов С в молекулах МПАВ – 8 – 12, т. е. эти соединения имеют достаточно большой углеводородный радикал.
