- •Введение
- •1. Предмет коллоидной химии, её место среди естественнонаучных
- •2. Признаки объектов коллоидной химии
- •3. Краткий исторический очерк
- •Глава 1 особенности строения поверхностного слоя. Поверхностное натяжение
- •1.1. Поверхностная энергия Гиббса. Поверхностное натяжение
- •1.2. Пути уменьшения свободной поверхностной энергии
- •1.3. Поверхностно-активные вещества
- •1.4. Классификация поверхностно-активных веществ
- •1.5. Применение поверхностно-активных веществ
- •1.6. Изотерма поверхностного натяжения. Уравнение
- •1.7. Свойства пав: поверхностная активность, гидрофильно-
- •1.8. Мицеллообразование в растворах мпав. Критическая
- •1.9. Липосомы
- •Глава 2 когезия. Адгезия. Смачивание
- •2.1. Когезия
- •2.2. Адгезия
- •2.3. Смачивание. Растекание
- •2.4. Инверсия смачивания
- •Глава 3 адсорбция
- •3.1. Общие понятия
- •3.2. Адсорбция на поверхности раздела “жидкость - газ”
- •3.3. Адсорбция на поверхности раздела «жидкость – жидкость»
- •3.4. Адсорбция на поверхности раздела «твёрдое тело – газ»
- •3.4.1. Мономолекулярная адсорбция. Уравнение Лэнгмюра
- •3.4.2. Уравнение Фрёйндлиха
- •3.4.3. Полимолекулярная адсорбция. Капиллярная конденсация
- •3.5. Адсорбция на поверхности раздела «твёрдое тело – жидкость»
- •3.5.1. Молекулярная адсорбция
- •3.5.2. Адсорбция из водных растворов электролитов
- •3.5.3. Влияние природы адсорбирующихся ионов
- •Уменьшение гидратированности
- •У величение адсорбируемости:
- •3.5.4. Влияние природы адсорбента
- •3.5.5. Образование двойного электрического слоя
- •3.5.6. Обменная адсорбция
- •3.5.6.1. Иониты
- •3.6. Хроматография
- •3.6.1. Общие представления и классификация хроматографических методов
- •3.6.2. Газовая хроматография
- •3.6.3. Жидкостная хроматография
- •3.6.3.1. Адсорбционная хроматография
- •3.6.3.2. Распределительная хроматография
- •3.6.3.3. Аффинная хроматография
- •3.6.3.4. Эксклюзионная хроматография
- •3.6.3.5. Ионообменная хроматография
- •3.6.4.1. Осадочная хроматография
- •Глава 4 получение и очистка дисперсных систем
- •4.1. Классификация
- •4.2. Получение
- •4.2.1. Диспергационные методы
- •4.2.2. Конденсационные методы
- •4.2.3. Комбинированные методы
- •4.3. Очистка коллоидных растворов
- •Глава 5 двойной электрический слой. Строение мицеллы лиофобных золей
- •5.1. Строение двойного электрического слоя
- •Поверхность скольжения
- •5.2. Влияние на двойной электрический слой разбавления
- •5.3. Строение мицеллы лиофобных золей
- •5.4. Формула мицеллы
- •5.5. Электрокинетические явления
- •5.6. Экспериментальное определение электрокинетического
- •Глава 6
- •6.1. Виды устойчивости
- •6.2. Факторы агрегативной устойчивости
- •6.3. Коагуляция
- •6.4. Коагуляция под действием электролитов. Порог коагуляции
- •6.5. Теории коагуляции
- •6.7. Коагуляция смесью электролитов
- •6.8. Привыкание
- •6.10. Взаимная коагуляция золей
- •6.11. Коллоидная защита
- •Глава 7
- •7.1. Броуновское движение и диффузия в коллоидных системах
- •7.2. Седиментация и седиментационная устойчивость
- •7.3. Закономерности седиментации в гравитационном поле.
- •7.4. Седиментация в центробежном поле
- •7.5. Седиментационный анализ
- •7.6. Вязкость дисперсных систем
- •7.7. Осмотическое давление дисперсных систем
- •Глава 8
- •8.1. Явления, наблюдаемые при попадании света в дисперсные
- •8.2. Рассеяние света. Уравнение Рэлея
- •8.3. Оптические методы исследования и анализа
- •Глава 9
- •9.1. Суспензии и пасты
- •9.2. Эмульсии
- •9.3. Пены
- •9.4. Аэрозоли
- •9.5. Порошки
- •Глава 10
- •10.1. Классификация высокомолекулярных веществ
- •10.2. Получение, применение и свойства высокомолекулярных
- •10.3. Фазовые и физические состояния полимеров
- •10.4. Набухание
- •10.5. Растворение
- •10.6. Свойства растворов высокомолекулярных веществ
- •10.6.1. Вязкость. Вискозиметрия
- •10.6.2. Осмотическое давление, Осмометрия
- •10.6.3. Мембранное равновесие
- •10.6.4. Оптические свойства
- •10.7. Полиэлектролиты. Белки. Изоэлектрическая точка
- •10.7.1. Методы определения изоэлектрической точки белков
- •10.8. Выделение вмв из растворов. Коацервация
- •10.9. Застудневание
- •10.10. Пластическая вязкость. Уравнение Бингема
- •Глава 11
- •11.1. Классификация и применение гелей и студней
- •11.2. Свойства гелей и студней
- •11.2.1. Тиксотропия
- •11.2.2. Синерезис
- •11.2.3. Диффузия в гелях и студнях
- •11.2.4. Периодические реакции
2. Признаки объектов коллоидной химии
Для объектов коллоидной химии характерны два общих признака - гетерогенность и дисперсность. Все особые свойства, присущие им, являются следствиями или функциями гетерогенности и дисперсности.
Гетерогенность (многофазность) - признак, указывающий на наличие межфазной поверхности раздела. В отличие от других гетерогенных систем дисперсные системы обладают высокой степенью раздробленности и большим количеством частиц дисперсной фазы.
Дисперсность (раздробленность) определяется размерами частиц дисперсной фазы. Чем меньше линейные размеры частиц фазы, тем больше её дисперсность. Количественно дисперсность может быть выражена такими характеристиками:
1) линейные размеры частиц а. Размерность а в системе СИ - м. В случае изометрической формы частиц – кубической или сферической, под линейными размерами подразумевается диаметр или ребро куба, а в случае нитей, капилляров, плёнок и других неизометрических частиц - это длина наименьшей оси частицы.
2) степень дисперсности D, часто называемая просто дисперсностью. D - это величина, обратная линейным размерам частиц D = 1/a. Размерность D в системе СИ – м1. D можно представить себе как число частиц, укладывающихся на единице длины, т. е. на 1 м.
3) удельная поверхность Sуд, определяемая отношением межфазной поверхности к объёму или к массе частиц дисперсной фазы. Различают два вида удельной поверхности:
Удельная поверхность по объёму:
,
где n - число частиц, S - площадь поверхности одной частицы, V - объём одной частицы. Размерность Sуд V м2/м3 (или менее правильно м1).
Во многих случаях дисперсии самопроизвольно принимают форму, близкую к сферической или к кубической. Это связано с тем, что из всех геометрических тел сфера и куб имеют наименьшую площадь поверхности при том же объёме. Поэтому существуют простые формулы для расчёта Sуд V:
для систем со сферическими частицами
,
где r - радиус частицы, d - её диаметр;
для систем с кубическими частицами
,
где а - длина ребра куба.
Удельная поверхность по массе:
,
где
m
- масса одной частицы. Так как m
= V,
где
- плотность вещества частиц, то можно
записать:
.
Значит,
для систем со сферическими частицами
;
для систем с кубическими частицами:
.
Все три характеристики дисперсности связаны между собой: с уменьшением а увеличиваются дисперсность D и удельная поверхность Sуд.
При уменьшении количественной характеристики - размера частиц - с достижением определённой степени дисперсности наступает качественное изменение свойств гетерогенной системы, а именно: из множества физических и химических свойств ведущую роль приобретают поверхностные явления. Начинает проявляться это качественное своеобразие при уменьшении размеров частиц дисперсной фазы до 104 106 м, а особенно ярко выражается в системах с частицами размером 107 109 м. Именно такие системы собственно и являются объектами изучения коллоидной химии (коллоидными системами). Поэтому принято говорить о частицах коллоидных размеров и об особом коллоидном состоянии вещества, подчеркивая этим своеобразие систем с чрезвычайно мелкими частицами.
