- •Содержание
- •Предисловие.
- •1. Эконометрика, предмет и метод
- •1.1. Предмет и метод
- •1.2. Эконометрическая модель
- •1.3. Измерения в экономике
- •Номинальная шкала
- •Порядковая (ординальная, ранговая) шкала
- •Интервальная шкала (шкала разностей)
- •Шкала отношений (пропорциональная шкала)
- •Особенность экономических измерений
- •Контрольные вопросы
- •Вопросы к тестам
- •Ключ к тестовым вопросам
- •2. Изучение взаимосвязей в эконометрике
- •2.1. Понятие о взаимосвязях. Методы выявления и измерения взаимосвязей
- •2.2. Метод сопоставления параллельных рядов. Корреляция альтернативных признаков
- •Расчет коэффициента Фехнера.
- •Коэффициент корреляции рангов Спирмена
- •Корреляция альтернативных признаков
- •2.3. Метод аналитических группировок
- •Выбор факторных признаков
- •Определение числа групп
- •Оценка линии регрессии
- •Измерение тесноты связи
- •Контрольные вопросы
- •Вопросы к тестам
- •Ключ к тестовым вопросам
- •2.4. Корреляционно-регрессионный анализ Основные понятия
- •2.4.1. Парная регрессия. Парная корреляция.
- •Отбор фактора в модель парной регрессии
- •Спецификация модели парной регрессии
- •2.4.1.1. Парная линейная регрессия
- •2.4.1.2. Парная линейная корреляция
- •2.4.1.3. Оценка надежности уравнения парной линейной регрессии, его параметров и коэффициента парной линейной корреляции
- •2.4.1.4. Парная нелинейная регрессия
- •Линеаризация полиномов разных степеней
- •Линеаризация равносторонней гиперболы
- •Линеаризация степенной функции
- •Линеаризация показательной функции
- •2.4.1.5. Коэффициенты эластичности в парных моделях
- •2.4.1.6. Парная нелинейная корреляция. В нелинейных моделях для определения силы связи рассчитывают индекс корреляции:
- •2.4.1.7. Оценка статистической надежности в парных нелинейных моделях
- •2.4.1.8. Прогнозирование на основе парной модели регрессии. Расчет доверительных интервалов
- •Расчет доверительного интервала для функции регрессии
- •Расчет доверительного интервала для индивидуальных значений результативного признака
- •Расчет доверительных интервалов для параметров уравнения регрессии
- •Контрольные вопросы
- •Вопросы к тестам
- •Ключ к тестовым вопросам
- •2.4.2. Множественная регрессия. Множественная Корреляция.
- •2.4.2.1. Множественная регрессия.
- •Отбор факторов модели множественной регрессии
- •Спецификация модели множественной регрессии
- •Расчет параметров уравнения множественной регрессии
- •2.4.2.2 Частные уравнения регрессии
- •2.4.2.3. Множественная корреляция
- •Скорректированный индекс множественной детерминации
- •2.4.2.4. Частная корреляция
- •2.4.2.5. Оценка надежности параметров множественной регрессии и корреляции
- •Контрольные вопросы
- •Вопросы к тестам
- •Множественная корреляция
- •Оценка надежности параметров множественной регрессии и корреляции
- •3. Системы эконометрических уравнений
- •Система независимых уравнений
- •Система рекурсивных уравнений
- •Система взаимозависимых уравнений
- •3.1. Структурные и приведенные системы одновременных уравнений
- •3.1.1. Проблема идентификации. Необходимое и достаточное условие идентификации
- •3.1.2. Оценивание параметров структурной модели
- •3.1.2.1. Косвенный метод наименьших квадратов (кмнк)
- •3.1.2.2. Двухшаговый метод наименьших квадратов (дмнк)
- •Контрольные вопросы
- •Вопросы к тестам
Ключ к тестовым вопросам
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
а |
б |
а |
а |
в |
б |
а |
б |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
в |
в |
в |
б |
а |
в |
а |
в |
2. Изучение взаимосвязей в эконометрике
2.1. Понятие о взаимосвязях. Методы выявления и измерения взаимосвязей
В природе, и тем более в обществе, все явления взаимосвязаны между собой. Урожайность зависит от качества почвы, внесения удобрений, обеспеченности производственными фондами и от многих других факторов; производительность труда от производственных затрат, обеспеченности основными и оборотными фондами и т.д.; среднедневная температура от времени года, местоположения страны удаленности от океана и т.д. Соответственно, что бы прогнозировать, то есть управлять развитием явлений, общественных и природных, необходимо установить связи, существующие между интересующими нас явлениями, их силу, вид, направление и т.д.
Так как, в статистике изучают детерминированность следствия факторами (детерминизм – обусловленность явлений множеством факторов) будем называть признак (явление) характеризующий следствие результативным признаком (зависимым признаком, результатом). Признаки, характеризующие факторы – факторными признаками (независимыми признаками). Результативные признаки принимают то или иное значение под влиянием на них признаков факторных. Соответственно размер результативного признака есть результат влияние на него факторных признаков.
В статистике различают два вида взаимосвязей между явлениями: функциональная и корреляционная.
Функциональная связь – это связь, жестко детерминированная или полная (связь равная единице или 100%), размер результативного признака зависит только от одного фактора, причем каждому конкретному значению факторного признака может соответствовать одно, или несколько четко заданных значений результативного признака.
Строго определить функциональную связь можно, только придав ей математическую формулировку. Функциональной связью является, например, связь вида:
а)
,
при
,
б)
,
при
,
,
или
Видно, что величина
признака
зависит,
лишь от признака
,
причем строго определенным образом.
Но, в мире природы и тем более в обществе функциональных связей не бывает – все явления реального мира взаимосвязаны между собой. И поэтому функциональная связь – это связь абстрактная, упрощающая расчеты, но и упрощающая объективно существующую реальность. Тем не менее, представление о связях как связях функциональных используют такие науки как химия, физика, механика, электротехника и т.д.
Обратная величина функциональной связи – это отсутствие связи (связь между явлениями равна нулю), размер результативного признака совершенно не зависит от какого-то фактора. Отсутствие связи, как и связь функциональная не существует в реальном мире – это также абстрактное понятие, упрощающее расчеты и соответственно реальность.
Корреляционная связь – это связь схоластически детерминированная, неполная. При корреляционной связи каждому значению факторного признака (признаков) соответствует множество значений результативного признака. Корреляционная связь проявляется лишь при большом числе наблюдений, в среднем.
Также различают формы связи:
прямая связь – с возрастанием величины фактора наблюдается рост величины результата, а при уменьшении величины фактора уменьшение величины результативного признака.
обратная связь – с увеличением величины фактора величина результативного признака уменьшается, а с уменьшением увеличивается.
Кроме того, по математическому выражению, связи делятся на линейные и нелинейные.
При изучении взаимосвязей общественных явлений используют различные методы, такие как:
сопоставление параллельных рядов;
метод аналитических группировок;
корреляционно-регрессионный анализ;
и др.
Изучение взаимосвязей позволяет решить следующие задачи:
определить наличие связи;
определение формы связи;
измерение тесноты связи;
прогнозирование изменения результативного признака под влиянием изменения фактора (факторов).
