
- •Оглавление
- •Предисловие
- •Введение
- •1. Роль машиностроения в создании машин для производства строительных материалов
- •1.1 Машиностроение как базовая отрасль индустрии страны
- •Комплексная механизация и автоматизация производства: проблемы и задачи. Роботизация рабочего оборудования
- •Основные направления развития машин и оборудования для производства строительных материалов
- •2. Общие вопросы создания машин
- •2.1. Состав машины как системы. Принципы классификации машин
- •2.2.Выявление потребности в создании новых машин
- •2.3.Обеспечение качественных показателей и высокого технического уровня создаваемой техники
- •2.3.1.Формирование технических требований к создаваемым машинам и оборудованию
- •2.3.2.Методика оценки технического уровня создаваемой техники
- •2.4. Основные этапы создания машин
- •2.4.1. Прогнозирование новых конструкций машин
- •2.4.2.Проектирование новых машин
- •2.4.3. Подготовка производства к выпуску новых машин
- •2.4.4.Освоение производства новых конструкций машин
- •3. Основы научных исследований
- •3.1. Роль науки в развитии общества и в инженерной деятельности
- •3.2. Наука, научные кадры, научные учреждения
- •3.2.1. Наука
- •3.2.2. Научные кадры
- •3.2.3. Научные учреждения
- •3.3. Накопление и обработка научной и технической информации
- •3.3.1. Научные произведения и их особенности
- •3.3.2. Научно-техническая информация
- •3.3.3. Картотека и каталоги
- •3.4.Классификация и основные этапы научно-исследовательских работ. Выбор темы научных исследований
- •3.5. Способы и методы теоретического исследования
- •3.6. Модели исследований
- •3.7. Методы экспериментальных исследований
- •3.7.1. Методология эксперимента
- •3.7.2. Разработка плана-программы эксперимента
- •3.7.3. Методы оценки измерений
- •3.7.4. Обработка и анализ результатов экспериментальных исследований
- •Методы графического изображения результатов измерений
- •Методы подбора эмпирических формул
- •Корреляционный анализ
- •Проверка адекватности теоретических зависимостей экспериментальным данным
- •3.8. Внедрение и эффективность научных исследований
- •4. Изобретательская деятельность
- •4.1. Открытия. Формы их охраны
- •4.2. История развития изобретательской деятельности
- •4.3.Интеллектуальная собственность
- •4.4.Изобретение
- •4.4.1. Объекты изобретения
- •4.4.2. Формула изобретения
- •4.4.3. Алгоритм изобретателя
- •4.4.4. Права изобретателей и правовая охрана изобретений
- •4.4.5. Авторское свидетельство. Патент
- •4.4.6. Составление и оформление заявок на изобретение
- •4.5. Экспертиза заявки на изобретение
- •4.5.1. Отсроченная экспертиза
- •4.5.2. Формальная экспертиза
- •4.5.3. Экспертиза заявки по существу (патентная экспертиза)
- •4.6. Классификация изобретений
- •4.7. Система патентной информации в рф
- •4.8. Патентный поиск
- •4.9. Покупка и продажа лицензий
- •4.9.1. Условия лицензионных договоров
- •4.10. Полезная модель
- •4.11. Промышленный образец
- •4.12. Товарные знаки
- •4.13. Заключение
- •5. Основные принципы конструирования машин
- •5.1. Задачи конструирования
- •5.2. Экономические основы конструирования машин
- •5.2.1. Полезная отдача
- •5.2.2 .Качество и конкурентоспособность
- •5.2.3. Экономическая эффективность
- •5.2.4.Менеджмент
- •5.3.Стандартизация и ее роль при проектировании машин и оборудования
- •Нормативные методы управления
- •5.3.1.Методы стандартизации
- •5.4 Методы создания производных машин на базе унификации
- •5.4.1 Секционирование
- •5.4.2 Метод изменения линейных размеров
- •5.4.3 Метод базового агрегата
- •5.4.4 Метод компаундирования
- •5.4.5 Модифицирование
- •5.4.6. Комплексная нормализация
- •5.4.7. Унифицированные ряды
- •5.4.8.Проблемы и задачи унификации
- •5.5. Основы методологии конструирования
- •5.5.1.Конструктивная преемственность при создании новой техники
- •5.5.2. Изучение сферы применения машин
- •5.5.3. Выбор конструкции
- •5.5.4. Метод инверсии
- •5.5.5. Компонование
- •5.5.6. Техника компонования
- •6. Стадии проектирования. Виды изделий и конструкторская документация
- •6.1. Стадии разработки конструкторской документации
- •6.2. Виды изделий
- •6.3. Виды конструкторских документов
- •6.4.Комплектность конструкторских документов
- •6.5.0Бщие положения ескд
- •6.6. Микропроцессорная и вычислительная техника при проектировании машин
- •6.6.1.Составление моделирующего алгоритма формирования образца машины и характеристика его основных этапов
- •Обеспечение требований технической эстетики и эргономики при создании новых машин и оборудования
- •7.1. Основные научные направления изучения системы "человек - машина - среда"
- •7.2. Художественное конструирование - неотъемлемое звено процесса конструирования
- •7.3. Форма изделия —активный фактор при конструировании
- •7.4. Дизайн
- •7.4.1. Эстетическая оценка качества
- •7.4.2. Краткая историческая справка
- •7.4.3. Красота
- •7.4.4. Единство, пропорциональность, форма
- •7.4.5. Гармония красок
- •7.5. Структура теории композиции в технике. Категории композиции
- •7.6. Цвет, функциональная окраска в машиностроении
- •7.7. Основные эргономические требования, предъявляемые к машинам при конструировании
- •8. Основные принципы конструирования деталей и сборочных единиц
- •8.1. Унификация конструктивных элементов
- •8.2. Принцип унификации деталей
- •8.3. Принцип агрегатности
- •8.5. Агрегатирование зубчатых передач(начало)
- •8.4.Устранение подгонки
- •8.5. Рациональность силовой схемы
- •8.6. Компенсаторы
- •8.7. Устранение и уменьшение изгиба
- •8.8. Компактность конструкции
- •8.9. Совмещение конструктивных функций
- •8.10. Принцип самоустанавливаемости
- •8.11 Бомбирование
- •8.12. Влияние упругости на распределение нагрузок
- •8.13. Сопряжение по нескольким поверхностям
- •8.14. Осевая фиксация деталей
- •8.15. Сменность изнашивающихся деталей
- •8.16. Составные конструкции
- •Заключение
- •Учебное издание Герасименко Вера Борисовна Фадин Юрий Михайлович
3.7.4. Обработка и анализ результатов экспериментальных исследований
При проведении НИР особое место принадлежит анализу результатов эксперимента, на основании которого делают выводы о подтверждении гипотезы научного исследования. Данные эксперимента, тщательное сопоставление фактов, причин, обусловливающих ход рабочего процесса, позволяют четко представить физическую сущность процесса и установить адекватность гипотезы и эксперимента. Ниже приведены некоторые методы обработки и анализа экспериментальных данных.
Методы графического изображения результатов измерений
Графическое изображение результатов измерений дает наиболее наглядное представление о ходе процесса, позволяет лучше понять его физическую сущность, выявить общий характер функциональной зависимости изучаемых величин, установить наличие максимума или минимума функции. Для графического изображения результатов измерений, как правило, применяют систему прямоугольных координат.
Прежде чем строить график, необходимо ориентировочно знать качественные закономерности и форму графика (из теоретических исследований). Обычно функции имеют плавный характер изменения. Резкое отклонение значений измерения от плавной кривой объясняется погрешностями измерений (рис. 3.1). Однако могут быть и исключения, когда на определенной стадии процесса один из параметров изменяется скачкообразно, что объясняется сущностью физико-химических процессов (рис. 3.2). В таких случаях требуется особо тщательное построение графика, так как общее "осреднение" всех точек плавной кривой может привести к искажению сущности процесса.
В случае выявления зависимости между тремя и более переменными при графическом изображении применяют метод разделения переменных, когда одной, из величин задают несколько последовательных значений n1, n2,..., ni, а для двух других переменных S и t (при п = const) строят графики S =f(t, n) получая при этом семейство кривых (рис. 3.3).
Рассмотренный метод является наиболее простым и наглядным, однако требует тщательности и внимания к результатам измерений и построению графиков. Особо тщательно следует строить графики в точках изгиба, скачка.
Значительное практическое применение находят номограммы, позволяющие рассчитывать интересующие величины без сложных формул, а лишь пользуясь графическими зависимостями в определённых пределах измеряемых величин.
При графическом изображении результатов экспериментов значительную роль играет выбор системы координат, или координатной сетки, которая может быть равномерной или неравномерной. У равномерных сеток, например в системе прямоугольных координат, ординаты и абсциссы имеют равномерную шкалу. К неравномерным координатным сеткам можно отнести полулогарифмические (с равномерной ординатой и логарифмической абсциссой), логарифмические (обе оси логарифмические), вероятностные, которые, как правило, имеют равномерную ординату и вероятностную абсциссу.
В большинстве случаев неравномерные координатные сетки применяют для более наглядного изображения функций.