Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Изменения в природных биологических системах - Федоров В.Д

..pdf
Скачиваний:
40
Добавлен:
24.05.2014
Размер:
3.71 Mб
Скачать

ристикой отношений между водорослевыми популяциями. Для план5 ктонологов же остается «сухой остаток», который может пригодить5 ся при анализе консорций: сходное количество биомассы микроводорослей обладает разной удельной активностью в зависи5 мости от размерной структуры организмов, образующих однотип5 ное сообщество. Можно надеяться, что методы определения «работающей» биомассы привлекут к себе достаточно пристальное внимание фитопланктонологов.

В еще недавно активно дискутировавшемся вопросе о взаимоот5 ношениях водорослей и бактерий в водоемах, опираясь на данные о динамике численностей этих организмов в природе, привычно схва5 тывались сторонники прямо противоположных мнений: одни при5 водили доводы за «больше — меньше» (сравниваемых таксоценов), другие — за «больше— больше». Учитывая данные выше постула5 ты, можно с уверенностью сказать, что отношения между водорос5 лями и бактериями в водоеме не конкурентны, скорее, можно говорить о симбиозе и комменсализме.

Наконец, «парадокс планктона» — знаменитый в планктонологии вопрос, породивший много весьма остроумных и недоказуемых объяс5 нений: почему водоросли не могут вытесниться до конца бактериями, конкурирующими за биогенные элементы, имеющими явное размер5 ное преимущество? А применительно к фитопланктону этот вопрос звучит еще острее: почему мелкие формы в период обострения кон5 куренции не способны до конца вытеснить крупные формы?

Вообще5то, используя, как уже говорилось, метод спасительной аналогии, все эти вопросы можно поставить в плоскость объяснения причин автоколебания в системе «теснящих» и «теснимых» (срав5 ните «хищник» и «жертва», а в однотипных ассоциациях — те же «хищник» и «жертва» в борьбе за дефицитный ресурс) организмов и применять к таким видам хорошо разработанный математический аппарат для данной аналитической модели. Но можно пойти и по более простому пути, Не будем упускать из виду, что во всех фор5 мулировках «парадокса» речь идет о видах с неполностью совпада5 ющей фундаментальной нишей, о видах с заведомо существующими чертами «несходства» отношений к качеству пищи и ее количеству, с метаболическими возможностями, предусмотренными постулата5 ми; о видах, пребывающих в условиях постоянно изменяемой среды обитания, и т. д. Тогда «парадокс планктона» оказывается схолас5 тической чепухой, вытекающей из условий постановки эксперимен5 та, выхвативших мимолетно возникающую в природе ситуацию, а не имитирующих положение дел в природе и даже не в «ведре» (посадите в зоопарке в одну клетку тигра и шакала и попробуйте не додать тигру мяса, а ведь в природе тигр и шакал уживаются впол5 не «мирно»). Дело в том, что, как правило, в природе «мяса» хвата5

361

ет, сбалансированность процессов в равновесной системе такова, что активность каждой отдельно взятой популяции компенсируется совокупностью всех активностей совместно обитающих видов. По5 этому эпизодически возникающая «разбалансировка» приводит к кратковременному обострению конкуренции, с которой организмы справляются изменением нормы реакции всеми отпущенными им способами: разбегаются, переходят на иной тип питания, адаптиру5 ются к новым условиям, используя особенности своей биологии (об5 разование спор, колоний или газовых вакуолей, перемещающих их в иные слои «в поисках лучшего»), и т. д.

Таким образом, условия экспериментов, породившие «принцип Га5 узе», не имитируют природную ситуацию, а наоборот, исследуют по5 ведение и судьбу популяций в экстремальных, спровоцированных условиями эксперимента ситуациях, которых нет в природе,— нет «изолированного» пространства, безвыходно «сталкивающихся» парт5 неров, есть сложность окружения, подразумевающая способ «миними5 зации» конфликтной ситуации благодаря генетической я, следовательно, аутэкологической «несхожести» сосуществующих партнеров.

В заключение остановимся на рассмотрении общих закономерно5 стей продукционного процесса в водных экосистемах, тех законо5 мерностей, которые традиционно осмыслены в рамках представлений о биологических сезонах в досистемный период анализа ситуаций.

Традиционно живая часть экосистем изучается на уровне таксо5 ценов совокупностей организмов, объединяемых по принадлеж5 ности к некоторому таксономическому рангу (царство, тип, класс и т. д.). В общем случае возникает задача правильного распределения обилия (численности, биомассы и др.) таксоцена по функциональ5 ным группировкам. Принято считать, что отождествление функци5 ональных группировок планктонного сообщества — продуцентов, консументов и редуцентов — с таксоценами водорослей, животных и бактерий адекватно отражает сущность продукционного процесса

вводоемах различного типа. Эта схема прочно укоренилась в со5 знании гидробиологов и традиционно излагается в учебниках и мо5 нографиях без малого пятьдесят лет. Математическое моделирование позволяет сопоставить эту схему (и проверить ее реальность) с пред5 ставлениями о целостности водоема как единой функционирующей системы, которые после работ Форбса [19] составляют теоретичес5 кий фундамент гидробиологии. Сегодня эта проверка основана на идеях сбалансированности круговорота веществ и потоков энергии

вэкосистемах. В планктонологии издавна изучаются два таксоце5 на — фито5 и зоопланктон, причем первый полностью относят к трофическому звену первичных продуцентов. В последние десяти5 летия установлена первостепенная роль ранее не учитывавшихся (полностью или частично) таксоценов с осмотрофным типом пита5

362

ния (бактерий, грибов, простейших и др.), что привело к многочис5 ленным “попыткам усложнения трофической структуры при балан5 совых расчетах потоков энергии и органического вещества в природных экосистемах. Однако накопленные данные показывают, что при независимой оценке вкладов таксоценов, слагающих сооб5 щество, баланс энергии часто не сходится. Его «замыкание» (при сохранении за фитопланктоном роли первичного продуцента) тре5 бует “подгонки параметров функционирования других компонент экосистемы, что приводит к искажению их роли, установленной эк5 спериментально. На пути преодоления возникших трудностей по5 мимо дальнейшего расширения набора таксоценов перспективно выяснение истинной функциональной роли традиционных таксоце5 нов на основе современных представлений об их физиологии.

Существуют многочисленные материалы, обобщающие накоплен5 ный опыт исследования особенностей метаболизма микроводорослей. Специальное рассмотрение их потребовало бы составления объем5 ных сводок, что выходит за рамки задач настоящей статьи. В частно5 сти, в Московском университете начиная с работ Е. Е. Успенского и

витоге исследований сотрудников нашей лаборатории (которая, кста5 ти, изначально именовалась «Физиология и биохимия водорослей») установлена формоорганотрофность многих водорослевых популя5 ций и целых таксоценов. Успехи изучения физиологии чистых и сме5 шанных культур микроводорослей (Л. Д. Гапочка, Г. А. Карауш, Н. Г. Кустенко, Т. А. Игнатьевская, Л. Кафар5Заде, Л. В. Ильяш), а также анализ ситуаций в природном планктоне (Т. И. Кольцова, Т. В. Полякова, А. А. Каниковская, Н. О. Имнадзе, Н. А. Смирнов, В. В. Федоров) позволили сформулировать в рамках приведенных выше постулатов ряд важных положений относительно особенностей метаболизма микроводорослей.

1.Растительная клетка в той или иной степени способна к гете5 ротрофному метаболизму, доля которого зависит как от ее физио5 логического состояния, так и от внешних условий.

2.Субстратами и источниками для гетеротрофного метабо5 лизма микроводорослей могут служить их собственные метаболиты.

3.Для любой стратегии (по Л. Г. Раменскому) в фитопланкто5 не «есть популяции, «выбирающие» ее при смешанном культи5 вировании (лабораторные условия) или совместном существовании

вприроде.

4.Выбранная стратегия может меняться в ходе их жизнедея5 тельности, а также в зависимости от изменений в абиотической и биотической компонентах экосистемы.

5.Механизмом осуществления стратегии, ее функциональным выражением (отображением?) оказываются изменения преиму5

363

щественного типа питания, связанные в смещениях отношения до5 лей авто5 и органотрофного синтеза.

Об истинной экологической значимости перечисленных особен5 ностей физиологии микроводорослей в метаболизме природного фитопланктона свидетельствуют результаты экспериментальных исследований в водоемах разного типа [6, 17] и математический анализ данных [14]. Значимость гетеротрофной составляющей ме5 таболизма водорослей убеждает, что в рамках традиционной моде5 ли трофической цепи фитопланктон не может быть адекватно представлен единственным трофическим уровнем первичных про5 дуцентов [18]. Растворенное органическое вещество в водной экоси5 стеме играет роль резервуара субстратов и источников энергии, доступных всем осмотрофным организмам. Игнорирование, в част5 ности, этого факта делает традиционное описание природного фи5 топланктона в моделях водных экосистем неадекватным. Отмеченные выше трудности балансовых расчетов связаны, вероятно, не столько с несовершенством экспериментальных методов планктонологии, сколько с функциональной неоднородностью природного фитоплан5 ктона. Сказанное подтверждается проведенными расчетами баланса органического вещества в ходе сезонного развития планктона морей Белого [4] и Баренцева (Ю.А. Бобров, личное сообщение). Это вынуждает изменить существующие представления о сезонных осо5 бенностях продукционного процесса в водоемах и разбить продук5 ционный процесс на экологически значимые фазы, для каждой из которых характерно определенное соотношение разных типов син5 теза органического вещества. Вычленение отдельных фаз удобно провести на основе понятия вегетационного сезона, который соот5 ветствует периоду проникновения в водную толщу солнечной ради5 ации такой интенсивности, что фотоавтотрофный синтез возможен и превышает траты на обмен.

Первая фаза соответствует интервалу, начало которого совпада5 ет с началом сезона вегетации, а завершение характеризуется прак5 тически полным исчезновением из состава планктона облигатно фотоавтотрофных форм. Эта фаза функционально связана с пер5 вичным синтезом органического вещества и поэтому может быть названа фазой первичного синтеза. В описании продукционного процесса фаза первичного синтеза должна считаться инициальной. Ей присущи избыток элементов минерального питания при высокой освещенности и низкой температуре воды.

Последующее развитие фитопланктона функционально определя5 ется смешанным метаболизмом, в котором существенное значение наряду с фотоавтотрофным приобретает гетеротрофный (в опреде5 ленном выше смысле) синтез органического вещества. Этот период мы предлагаем называть фазой смешанного синтеза. Ее окончание соответствует завершению сезона вегетации. Фаза смешанного син5

364

теза характеризуется исчерпанием в фотическом слое запаса элемен5 тов минерального питания, относительно высокими температурой воды, освещенностью и концентрациями растворенного органическо5 го вещества, регенерацией биогенных элементов зоопланктоном.

Продукционный процесс логически завершается фазой, связан5 ной с органогетеротрофным метаболизмом фитопланктонного сооб5 щества. Эту фазу предлагается называть фазой вторичного синтеза. Она связывает два последовательных вегетационных сезона и ха5 рактеризуется низкой температурой воды и нулевой освещеннос5 тью, преобладанием биологических процессов минерализации органического вещества и регенерации биогенных элементов.

Ввысоких широтах смена фаз продукционного процесса имеет место в ходе сезонного развития. Для Белого моря фаза первичного синтеза охватывает двух5трехмесячный период, когда наблюдается весенняя «вспышка» фитопланктона; фазе смешанного синтеза со5 ответствует период, начинающийся летней «вспышкой» диатомово5 го планктона и включающий несколько комплексов видов; фазе вторичного синтеза отвечает зимнее (примерно пять месяцев) раз5 витие фитопланктона.

Внизких широтах пространственные изменения в планктоне го5 мологичны сезонному развитию планктона умеренных вод [3], что позволяет распространить предлагаемую схему продукционного процесса и на тропические воды. При этом фаза первичного синтеза вычленяется в зоне апвеллинга, постепенно уступая место фазе сме5 шанного синтеза. Фаза вторичного синтеза, возможно, соответству5 ет зоне конвергенции.

Каждой фазе продукционного процесса свойственны особые от5 ношения популяций, вследствие чего на фоне изменений состава сообщества некоторые виды эврибионтов в ходе сезонного развития переключаются с одного типа синтеза на другой, как это было отме5 чено в экспериментах с культурами водорослей [5, 13]. При этом корреляция функциональных изменений с изменениями таксономи5 ческого состава не прослеживается. Сказанное позволяет считать актуальным построение функциональной экологической классифи5 кации фитопланктона, непосредственно не связанной с системати5 ческим “положением особей. Возможный путь решения этой задачи основан на представлении вида вектором долей каждого типа синте5 за в его метаболизме. Разработка и совершенствование методов оцен5 ки этих долей — одна из актуальнейших задач гидробиологии.

Автор приносит благодарность И.И. Дедю и В.Н. Максимову за энергичное и дружеское обсуждение статьи. Их советы и критика во многом определили ее окончательный облик и способствовали утверждению положений, не обретших еще права гражданства в гидробиологической науке.

365

Л и т е р а т у р а :

Артемчук Н. Я. Микрофлора морей СССР. М.: Наука, 1981. 12. Беклемишев В. Н. О классификации биоценологических (симфизиоло5

гических) связей. – Бюл. МОИП. Отд. биол., 1951, вып. 5, с. 3. Виноградов М. Е. Пространственно5динамический аспект существова5

ния сообществ пелагиали. – В кн.: Океанология. Биология океана. М.: Наука, 1977, т. 2.Биологическая продуктивность, с. 14.

Гайденок Н. Д. Исследование функционирования фитопланктонного сообщества Кандалакшского залива Белого моря методом математического моделирования. Автореф. канд. дис. М., 1985.

Ильяш Л. В., Федоров В. Д. Динамика численности трех видов чер5 номорских динофлагеллят в смешанных культурах. – Биол. науки, 1985,

2, с. 67.

Каниковская А. А.; Федоров В. Д. Изучение сезонных изменений вза5

имоотношений фито5 и бактериопланктона Можайского водохранилища. III. Влияние фитопланктона на потребление бактериями различных орга5 нических источников азота и углерода. — Биол. науки, 1987, № 1, с. 66.

Кун Т. Структура научных революций. М.: Прогресс, 1975.

Мазинг В. В. Консорции как элементы функциональной структуры биоценозов. – Тр. МОИП, 1966, т. 27, с. 117.

Работнов Т. А. О консорциях. – Бюл. МОИП. Отд. биол., 1969, т. 34, вып. 4,с. 109.

Работнов Т. А. Консорция как структурная единица биогеоценоза. – Природа, 1974, № 2, с. 26.

Раменский Л. Г. О некоторых принципиальных положениях современ5 ной геоботаники. – Ботан. жури., 1952, т. 37, № 2, с. 181.

Селиванов А. И. Консорция в системе биотических взаимоотношений в биогеоценологии. – Уч. зап. Пермск. гос. пед. ин5та, 1976, вып. 150, с. 11.

Смирнов Н. А., Федоров В. Д., Ильяш Л. В. Относительный вклад трехвидов динофлагеллят в первичную продукцию при их смешанном культивировании. – Изв. АН СССР, сер. биол., 1986, № 3, с. 377.

Смирнов Н. А., Федоров В. В., Федоров В. Д. Функциональное эко5 логическое описание сезонного развития фитопланктона Белого моря. – Журн. общ. биологии, в печати.

Федоров В. Д. Доминирующие формы фитопланктона Белого моря. – Докл. АН СССР, 1969, т. 188, № 4, с. 913.

Федоров В. Д. К стратегии экологического прогноза. – В сб.: Человек и биосфера. М., 1983, вып. 8, с. 4.

Федоров В. Д., Каниковская А. А. Изучение сезонных изменений вза5 имоотношений фито5 и бактериопланктона Можайского водохранилища. II. Потребление фито5 и бактериопланктоном различных источников угле5 рода. – Биол. науки,1986, № 7, с. 70.

Федоров В. Д., Смирнов Н. А., Федоров В. В. Некоторые закономер5 ности продуцирования органического вещества фитопланктоном. – Докл. АН СССР, в печати.

Forbes S. A. The lake as a microcosm. – Bul. Peoria Sci. Ass., 1887.

Биологические науки № 8, 1987.

366

367

368

Соседние файлы в предмете Биология