
- •Общая часть
- •1.Предмет и объекты палеонтологии, ее роль в разработке эволюционной теории
- •2.Условия захоронения и сохранения в ископаемом состоянии остатков организмов (тафономия)
- •3.Разделы палеонтологии, история ее развития как науки
- •4.Биономические зоны моря. Основные экологические группы морских организмов
- •5.Биологическая номенклатура, ее особенности в палеонтологии
- •6. Химический и минеральный состав скелетов беспозвоночных и их роль в породообразовании
- •7. Значение ископаемых организмов для восстановления условий среды. Примеры.
- •8. Биотические события: возникновение жизни, массовые появления и вымирания организмов
- •9. Прокариоты. Общая характеристика, ископаемые представители. Строматолиты
- •10.Эвкариоты. Теория симбиогенеза. Деление на царства
- •11.Палеонтология и ее роль в создании эволюционной теории
- •12. Органический мир докембрия. Основные этапы. Эдиакарская (вендская) фауна
- •13.Органический мир палеозоя
- •15.Органический мир кайнозоя
- •Беспозвоночные
- •1. Простейшие, деление на типы. Общая характеристика классов Фораминиферы и Радиолярии.
- •2. Общая характеристика типа Губки, строение скелета и образ жизни.
- •3. Тип Археоциаты, строение скелета, деление на классы, образ жизни и геологическое значение
- •4. Общая характеристика типа Книдарии, деление на классы. Конуляты
- •5. Общая характеристика Коралловых полипов. Деление на подклассы, геологическая история, породообразующая роль
- •6. Общая характеристика типа Членистоногие. Деление на подтипы и классы
- •7. Общая характеристика типа моллюсков и деление на классы, геологическая история.
- •8.Классы Лопатоногие и Двустворчатые моллюски
- •9.Классы Моноплакофоры, Панцирные и Брюхоногие
- •10.Класс Головоногие моллюски, деление на подклассы, строение скелета и геологическое значение
- •11. Тип Мшанки. Общая характеристика, полиморфизм, систематика, геологическая история и породообразующая роль
- •12. Тип Брахиоподы. Общая характеристика, систематика, образ жизни, геологическая история
- •13. Тип Иглокожие. Общая характеристика, подтипы и классы, систематика
- •14.Граптолиты. Общая характеристика, систематическое положение и стратиграфическое значение
- •Позвоночные
- •1.Тип Хордовые. Основные признаки, деление на подтипы
- •2.Бесчелюстные животные. Особенности строения, геологическое распространение
- •3.Конодонты. Общая характеристика, значение для геологии
- •4.Надкласс рыб. Общая характеристика, геологическая история, особенности захоронения. Сравнение с надклассом тетрапод
- •5.Пластинокожие рыбы, акантоды и хрящевые рыбы. Особенности строения, геологическое распространение
- •6.Костные рыбы. Строение, геологическое распространение, особенности захоронения. Значение для эволюции тетрапод
- •7.Надкласс тетрапод. Общая характеристика, основные этапы эволюции. Конвергенция среди позвоночных животных
- •8.3Емноводные. Происхождение, особенности строения, систематика и геологическая история. Лабиринтодонты.
- •9.Рептилии. Особенности строения, систематика и геологическая история
- •10.Архозавры. Особенности строения, систематика и геологическая история
- •11.Водные и крылатые рептилии мезозоя
- •12.Птицы. Общая характеристика, происхождение, систематика и геологическая история
- •13.Млекопитающие. Деление на подклассы, геологическая история
- •14.Геологическое распространение и краткая характеристика некоторых (по выбору) отрядов плацентарных млекопитающих
- •15.Эволюция эндо и экзоскелета позвоночных
- •Растения
- •1.Золотистые, пиррофитовые и диатомовые водоросли. Роль в породообразовании и значение для стратиграфии
- •2.Красные, бурые, зеленые, харовые водоросли и акритархи. Морфология, значение для стратиграфии и палеогеографии
- •3.Риниофиты. Морфология, внутреннее строение, значение для стратиграфии
- •4.Ликоподиофиты. Морфология, внутреннее строение, значение для стратиграфии и палеоклиматологии
- •5.Эквизетофиты. Морфология, внутреннее строение, значение для стратиграфии и палеоклиматологии
- •6.Полиподиофиты. Морфология, внутреннее строение, стратиграфическое значение
- •7.Археоптеридофиты и лигиноптеридофиты. Морфология, внутреннее строение, стратиграфическое значение, отличие от полиподиофитов
- •8.Пинофиты. Морфология, внутреннее строение и стратиграфическое значение
- •9.Гинкгофиты и цикадофиты. Морфология, внутреннее строение, значение для палеоклиматологии
- •10.Покрытосеменные. Морфология, систематика и стратиграфическое значение
- •11.Высшие растения. Особенности строения и размножения
- •12.Споры и пыльца высших растений. Споровопыльцевой анализ.
- •13.Фитогеографическое районирование суши в позднем палеозое
- •14.Фитогеографическое районирование суши в мезозое
- •15.Основные этапы развития наземной растительности в фанерозое
8. Биотические события: возникновение жизни, массовые появления и вымирания организмов
Под биотическими событиями понимают значительные преобразования, зафиксированные в истории развития жизни. В такие события вовлекаются внушительные массы организмов на огромных, почти всеглобальных пространствах. К биотическим событиям относят: а) возникновение жизни, б) массовые появления и в) массовые вымирания организмов крупного таксономического ранга. Биотические события тесно связаны с геологическими (см. табл. 33). Возникновение жизни. Жизнь — это «активное, идущее с затратой полученной извне энергии поддержание и самовоспроизведение специфической структуры» (Биологический энциклопедический словарь, 1989). Проблемы возникновения жизни изучают многие научные дисциплины: биохимия, молекулярная биология, микробиология, органическая химия, геохимия и т.д. Недавно в углистых хондритах метеоритов обнаружены бактериоподобные образования. В палеонтологической летописи Земли сведения о первой жизни представлены органическими молекулами (хемофоссилии) и микроскопическими тельцами различного облика (эуфоссилии). Самые древние находки тех и друтих носят дискуссионный характер: эуфоссилии или псевдофоссилии (см. с. 91, 162; рис. 33). Так, утверждение о находке микроскопических дрожжевидных образований в Гренландии на рубеже 3,8 млрд лет, названных исуасферами (lsuasphaera), подвергается сомнению. Исуасферы, возможно, являлись газожидкостными пузырьками. Находки сферических и эллиптических микроскопических телец на рубеже 3,8 млрд лет, возможно, уже относятся к биологическим объектам. Из пород этого возраста выделены углеводороды, имеющие смешанное, абиогенное и биогенное, происхождение. Находки биохимических и морфологических фоссилий на 520 рубеже 3,5 — 3,2 (группа Онвервахт и др.), 3,1 (сланцы Фиг-Три), 2,7 млрд лет (сланцы Соуден) считают биогенными. В графитовых сланцах археозоя Атдабанского массива обнаружены, вероятно, самые древние остатки жизни преимущественно бактериального уровня. Таким образом, на данный момент палеонтологические данные указывают, что жизнь возникла около 3,8 млрд лет назад. Начиная с этого рубежа химическая эволюция дала начало биологической. Предполагают, что на стадии химической эволюции органические соединения имели равное количество левых и правых изомеров, т.е. обладали зеркальной симметрией. Последующее нарушение зеркальной симметрии привело к исчезновению «правых» аминокислот и «левых» сахаров. Нарушение симметрии, как полагают, явилось толчком перехода хемомолекул в биомолекулы. Причина нарушения симметрии неясна. Ее искажение объясняют внутренней или внешней причиной или их сочетанием. Внутренняя причина связана с неустойчивостью зеркальной симметрии, приводящей к «левым» и «правым» отклонениям (сравнить с изменчивостью). Появившиеся отклонения сохраняются и закрепляются (сравнить с наследственностью и естественным отбором). Внешние причины изменения симметрии видят в катастрофическом срыве с Земли первичной атмосферы, в шквальной метеоритной бомбардировке и т.д. Первыми «созданиями» химико-биологической эволюции были хемосинтезирующие бактерии анаэробного варианта, способные жить в бескислородной среде. В качестве окислителей служили неорганические вещества, такие, как углекислый газ, соединения серы, нитраты и др., реже — органические вещества хемогенного, а затем и биогенного происхождения. Массовые появления. В палеонтологической летописи к впечатляющим массовым появлениям жизни можно отнести много событий. Из них укажем следующие, отметив начало появления (рис. 327): ° 3,8 — 3,5 млрд лет (AR,). Возникновение жизни. Появление бактерий и цианобионтов. Литосфера начинает обогащаться породами биогенного происхождения (графиты, шунгиты). ° 3,2 млрд лет (АЯ ). Массовое развитие цианобионтов. Литосфера приобретает биогенные карбонатные толщи, названные строматолитовыми. Атмосфера начинает обогащаться молекулярным кислородом, выделяемым цианобионтами при фотосинтезе. ° 1,8 — 1,7 млрд лет (PR,/PR,). Появление аэробных бактерий, низших водорослей, животных и грибов. ° 1,0 — 0,7 млрд лет (R,— Ч). Появление достоверных многоклеточных водорослей и бесскелетных беспозвоночных, представленных книдариями, червями, членистоногими, (? )иглокожими и другими группами. ° 570 — 530 млн лет (6,). Массовое появление минеральных скелетов в царстве Животные почти у всех известных типов. ° 415 млн лет (S, /0,). Массовое появление наземной растительности. ° 360 млн лет (D — С). Массовое появление первых наземных беспозвоночных (насекомые, паукообразные) и позвоночных (земноводные, рептилии). ° 60 млн лет (MZ/KZ). Массовое появление покрытосеменных растений и млекопитающих. ° 2,8 млн лет (N,). Появление человека.
Массовое появление новых форм, как и вымирание, шло ступенчато, с различной скоростью (рис. 328). По меркам геологического времени большинство биотических событий происходило довольно быстро. Быстрый процесс возникновения новых органических форм иногда называют анастрофой (греч. ana — вверх, высшая степень; strophe — кружение, оборот). Вымирание организмов. Палеонтологическая летопись свидетельствует, что в пределах какого-то времени любая филогенетическая веточка исчезает. Вымирание происходит не только когда изменяются условия обитания, но и при довольно стабильном режиме Земли. а Исчезновение групп фиксируется по трем основным сценариям. В одном случае выпадение прежней группы связано с ее эволюционными преобразованиями в последующие группы потомков. Здесь происходит переход одних групп организмов в другие. Во втором случае прекращение существования связано собственно с вымиранием. Третий путь представляет сочетание первых двух: какое-то время идет преобразование, а затем группа вымирает. Конечный результат всех трех направлений совпадает — прежняя группа исчезает. Вымирание, как и появление новых групп, идет разными темпами. Кроме того, этот процесс осложняется периодами расцвета, угасания группы и перестройками среды. Продолжительность существования группы зависит и от таксономического ранга. Наибольшую продолжительность имеюг надцарства и царства (3,8 и 1,7 млрд лет), наименьшую — виды и подвиды (от 0,5 до 20 млн лет). В палеонтологической летописи наблюдается много рубежей массового вымирания. Вымирания по масштабу и выражению не одинаковы. В одном случае вымирают виды, в другом — роды, семейства, отряды. В фанерозое наиболее заметные массовые вымирания произошли в течение среднего — позднего кембрия, на границе ордовика — силура, силура — девона, девона — карбона, перми — триаса, триаса — юры, мела-палеогена (рис. 328). Массовые вымирания происходят ступенчато в интервале от нескольких до 10 — 35 млн лет. При большой скорости вымирания ступенчатость в масштабе всего геологического времени смотрится как почти «мгновенное» скачкообразное изменение. Такие вымирания относят к разряду внезапных бедствий, т.е. к катастрофам (греч. kata — вниз; strophe — кружение, оборот). Вымирания связаны с двумя причинами: внутренней (морфофизиологическое состояние) и внешней (абиотическая и биотическая среда обитания). Обе причины действуют одновременно, но внешняя, особенно абиотическая, проявляется ярче и поэтому ее часто принимают за единственную. Среди внутренних причин вымирания называют: исчерпание жизненного запаса сил («старение» и «смерть» по аналогии с индивидуальной жизнью); сокращение диапазона изменчивости; понижение качества полового и бесполого размножения; специализацию. Отсюда проистекает невозможность приспособления к изменяющимся условиям жизни. Среди внешних факторов вымирания рассматривают: изменение соотношения море — суша, вызванное сменой глобального тектонического режима; усиление вулканической деятельности и землетрясений; изменение расположения климатических поясов; глобальные колебания уровня океанов; изменение состава атмосфе523 ры; разрыв пищевых связей и качество пищи; повышение радиоактивности за счет миграции из недр Земли; космические причины (взрыв сверхновой звезды, столкновение с астероидом, метеоритная бомбардировка). Привлечение космических причин для объяснения вымираний наиболее популярно. В середине ХХ в. массовые вымирания связывали с гипотезой периодических взрывов сверхновых звезд, вызывающих усиление радиации, что влекло за собой мутационный взрыв и гибель большинства организмов. В последней четверти ХХ в. стали разрабатывать гипотезу метеоритной бомбардировки и периодических столкновений с астероидами, обогащенными иридием. В соответствии с этой гипотезой столкновения вызывают выброс огромного количества пыли в стратосферу, что на какое-то время задерживает доступ солнечного света на Землю. Такое объяснение казалось особенно привлекательным для массовых вымираний на рубеже мезозоя — кайнозоя. Действительно, на этой границе во многих местах обнаружены отложения, обогащенные иридием (Испания, Канада, Австралия, Мексика, Южная Америка, Казахстан). В то же время в Крыму и других регионах обогащение иридием на данном уровне не наблюдается. Кроме того, фактическое вымирание динозавров и головоногих началось задолго до предполагаемого столкновения с «иридиевыми» астероидами. Более того, уменьшение солнечного света на границе мезозоя — кайнозоя должно было привести к массовой гибели наземных растений. В действительности прослеживается обратная картина — массовое развитие растений, особенно покрытосеменных. Скорее всего, для объяснения катастрофических вымираний на разных рубежах фанерозоя не обязательно прибегать к экзотическим причинам. Вымирания хорошо объясняются сочетанием двух довольно простых причин: внутренней и внешней. Внутренняя причина связана с морфофизиологическим состоянием организмов, их эволюционнным уровнем развития и экосистемными отношениями. Внешняя причина связана с изменением физикогеографических характеристик окружающей среды, влияющих на экосистемные отношения и т.д., что приводит к общей дестабилизации. На основе геологической информации дестабилизация особенно четко фиксируется в изменении палеогеографической ситуации, когда планетарная трансгрессия сменяется регрессией. С ними связаны изменения уровня океана и климата, когда общепланетарный морской климат сменяется аридным. В морских сообществах глобальные регрессии сопровождались массовым вымиранием одних организмов и сохранением небольшого числа других. Последующая трансгрессия, приводившая к расширению акваторий и возникновению разнообразных экологических ниш, вызывала массовое появление новых морских форм. В наземных растительных сообществах трансгрессия, наоборот, приводила к массовому вымиранию растений. Во время последующей регрессии начиналось формирование новой растительности благодаря расширению территорий и возникновению на суше разнообразных экологических ниш. Колебательный трансгрессивно-регрессивный процесс действовал на морские и наземные биоты по принципу качелей. Ярким примером служит отрезок времени от 286 до 213 млн лет назад. Массовое вымирание морской биоты произошло на границе пермского — триасового времени, когда палеозой сменился мезозоем (около 250 млн лет назад), что совпало с регрессией. Массовое вымирание 524 растительной биоты наступило в середине триаса, когда палеофит сменился мезофитом (около 230 млн лет назад), что совпало с началом новой трансгрессии.