Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мозговой. Х и Ф нефти игаза.doc
Скачиваний:
260
Добавлен:
23.03.2016
Размер:
3.15 Mб
Скачать

12.2. Гидрокрекинг

Гидрокрекинг – это один из самых современных процессов, позво­ляющий получать широкий ассортимент продуктов высокого качества. Он предназначен для получения светлых нефтепродуктов (бензина, керосина, дизтоплива), высокоиндексных низкозастывающих масел и сжиженных газов при переработке под давлением водорода нефтяного сырья с большей молекулярной массой чем целевые продукты. При этом качество продуктов гидрокрекинга в большой степени зависит от свойств катализатора, его гидрирующей и кислотной активности.

12.2.1. Реакции алканов. На многофункциональном катализаторе протекает процесс гидрогенолиза алканов по схеме:

Г

СпН2п+2 + Н2 СтН2т+2 п-тН2(п-т) +2 . (12.17)

Скорость разрыва различных С – С связей зависит от катализатора. На платине эти скорости близки, а на никеле сначала рвутся концевые связи с образованием метана. Высокую активность при гидрогенолизе проявляют также некоторые цеолиты. Реакция протекает гомолитически с участием электронов катализатора. Крекинг и изомеризация алканов происходит также на кислотных и бифункциональных катализаторах.

Основное отличие гидрокрекинга от каталитического крекинга состоит в том, что общая конверсия алканов при гидрокрекинге значительно выше. Это связано с легкостью образования алкенов на гидрирующе-дегидрирующем катализаторе. При этом лимитирующая стадия процесса – инициирование цепи – при гидрокрекинге протекает быстрее, чем в каталитическом крекинге. Продукты гидрокрекинга имеют насыщенный характер, а катализаторы не закоксовываются, т. к. процесс протекает в токе водорода, и промежуточные алкены быстрее гидрируются чем закоксовываются.

12.2.2. Реакции циклоалканов. Незамещенные и метилзамещенные циклоалканы подвергаются в основном гидрогенолизу – расщеплению кольца по С – С связям. На бифункциональном катализаторе с низкой кислотностью разрыв происходит, как правило, по - связи по отношению к заместителю. Например, метилциклопентан при 250 – 270оС и 2,1 МПа на алюмоплатиновом катализаторе расщепляется следующим образом:

-связь

СН3(СН2)2СН(СН3)2

+ Н2 -связь

СН3 СН3СН2СН(СН3)СН2СН3 (12.18)

-связь

СН3(СН2)4СН3 .

На катализаторах с высокой кислотностью протекают в основном реакции изомеризации шестичленных циклов в пятичленные и по положению заместителей. Кольцо расщепляется незначительно. Цикланы с длинными заместителями изомеризуются и деалкилируются. Бицикланы превращаются в моноцикланы с высоким выходом пентанов.

12.2.3. Реакции алкенов. Алкены на кислотных центрах превращаются в карбкатионы и вступают в реакции, характерные для них. Они изомеризуются, расщепляются по- правилу и насыщаются.

K; H+ + K, изомеризация, -распад

R – CH=CH2 RCHCH3 R+ + алкен или

Г; Н2 К; - Н+

RCH2CH3 изоалкен меньшей молекулярной массы сумма низкомолеку-

Г; Н2

лярных алкенов и изоалкенов сумма низкомолекулярных алканов и изоалканов.

Соотношение реакций гидрирования и превращения алкенов по ионному направлению определяется активностью катализатора. Катали­заторы с высокой кислотной активностью способствуют образованию низко­молекулярных разветвленных алканов, главным образом изобутана, а катализаторы с высокой гидрирующей способностью благоприятствуют насыщению алкенов и образованию алканов с большой молекулярной масс­сой и незначительной разветвленностью. Скорость гидрирования снижается с возрастанием числа углеродных атомов в молекуле углеводорода (напри­мер, октилен гидрируется со скоростью вдвое меньшей, чем этилен).

12.2.4. Реакции аренов. На катализаторах с высокой гидрирующей активностью арены насыщаются, причем их гидрирование затруднено по сравнению с гидрированием алкенов. Это объясняется тем, что первая стадия этого процесса – образование циклогексадиена – идет с поглощением энергии. Дальнейшее гидрирование кольца протекает уже с выделеним тепла и соответственно с большей легкостью.

Гомологи бензола гидрируются труднее, вследствие пространственных затруднений при адсорбции на катализаторе, вызванных наличием заместителей. Скорость гидрирования гомологов бензола составляет от его скорости: толуола – 0,6; этилбензола – 0,4; изопропилбензола – 0,3; 1,3,5-три­метил­бензола – 0,2. Скорость гидрирования полициклических конденсированных аренов выше чем бензола, вследствие неравномерного распределения -электронной плотности. Например, скорость гидрирования антрацена до 9,10-дигидроантрацена в 3,3 раза выше, чем гидрирование бензола в 1,2-дигидробензол. Особенностью гидрирования полициклов является снижение скорости процесса по мере насыщения колец.

Н2 (1,0) Н2 (0,9) Н2 (0,45) Н2 (0,01) . (12.19)

Здесь в скобках указана относительная скорость реакции.

Вместе с последовательным гидрированием колец возможно расщеп­ление образовавшихся насыщенных колец с выделением алкилза­мещенных аренов:

С3Н7 С3Н7 СН3 С3Н7

Н2 Н2

Н2С + (12.20) СН3

СН3 .

Алкилбензолы далее могут подвергаться гидрогенолизу, преиму­щественно с последовательным отщеплением метана:

С3Н7 С2Н5 СН3 Н2 Н2 Н2 Н2 . (12.21) – СН4 – СН4 – СН4 – СН4 Н3С Н3С Н3С Н3С

На катализаторах с высокой кислотной активностью превращения аренов во многом схожи с каталитическим крекингом. Незамещенный моноцикл (бензол) стабилен. Метил- и этилзамещенные моноарены изоме­ризуются по положению заместителей и диспропорционируют. Алкил­бензолы с более длинными заместителями деалкилируют. Образовавшиеся алкильные карбкатионы после изомеризации подвергаются - распаду и насыщаются по схеме гидрокрекинга алканов с образованием низко­молекулярных алканов и изоалканов. Алкилбензолы, кроме того, могут превращаться в тетралин и индан по схеме:

2R1+ + +

2(СН2)4R – 2RH (CH2)2CHCH2R + (CH2)3CHR . (12.22)

Далее процесс продолжается следующим образом:

тетралин

+

индан

Полициклоарены на кислотных катализаторах гидрируются до моноциклоаренов с различными алкильными заместителями и далее расщепляются как алкилбензолы. Имеет место также образование тетралина и индана.

Сравнение скоростей реакций гидрокрекинга различных классов углеводородов показывает, что гидрирование полициклоаренов до моноаренов или моноцикланов происходит быстро, в отличие от реакций гидрирования моноаренов и моноцикланов. Гидрокрекинг алканов протекает также медленно. Поэтому в продуктах гидрокрекинга идет накопление моноаренов, моноциклоалканов и изоалканов.

12.2.5. Катализаторы процесса. В качестве кислотного компонента – носителя – используют цеолиты, алюмосиликаты, оксид алюминия. Для усиления кислотности можно вводить галогены, другие кислые добавки; проводят также деалюминирование или декатионирование цеолитов.

Гидрирующим компонентом служат Pt, Pd, Ni, Co, Fe, а также оксиды или сульфиды некоторых металлов VI группы Периодической системы, например W, Mo. Для повышения активности металлы восстанавливают водородом, а оксиды сульфидируют. Используют также промотирующие добавки в виде металлов VIII группы Периодической системы, например Re, Rh, Ir, редкоземельные элементы, такие как La, Ce, Nd. Перечисленные металлы применяют в качестве добавок для металлов той же VIII группы. В качестве добавок для оксидов молибдена и вольфрама применяют оксиды кобальта и никеля.

Функцию связующего несут либо кислотные составляющие ката­лизаторной композиции, либо оксиды Si, Ti, Zr, а также Мg- и Zr-силикаты.

Сульфиды и оксиды W и Mo с промоторами – это бифункциональные катализаторы, т. к. они активны и в реакциях гидрирования-дегидрирования, и в окислительно-восстановительных реакциях.

Наилучшие результаты в процессе гидрокрекинга получают при использовании катализаторов с высокой кислотностью и умеренной гидрирующей активностью.

Каталитическими ядами для металлов VIII группы являются элементы V группы Периодической системы (N, P, As, Sb, Bi) и некоторые элементы VI группы (O, S, Se, Te). По этой причине гидрокрекинг сырья с высоким содержанием гетеросоединений проводят в две ступени. При этом первой ступенью является гидроочистка с неглубоким крекингом полициклоаренов. Катализаторами здесь служат традиционные катализаторы гидроочистки. Перед второй ступенью сырье должно содержать не более 0,01 % S и не более 0,0001 % N . Вторую ступень гидрокрекинга проводят на платиновом и/или палладиевом катализаторе, нанесенном на цеолит типа Y.

При одноступенчатом гидрокрекинге дистиллятных фракций, в которых гетероатомные соединения почти отсутствуют, используют бифункциональ­ные катализаторы на основе металлов платиновой группы (0,1 – 0,3 %) или никель в количестве 2 – 10 %. Можно применить композицию, включающую никель или кобальт в количестве 2,5 – 5 % и молибден или вольфрам в количестве 5 – 15 % в сульфидной форме. В качестве кислотного компонента в этом случае применяют цеолиты, алюмосиликаты или оксид алюминия.

В процессе селективного гидрокрекинга (селектогидрокрекинг) приме­няют модифицированные цеолиты (модернит, эрионит и др.) с повышенным силикатным модулем. В таких цеолитах поры доступны только нормальным алканам. Применяемые в селектогидрокрекинге катализаторы аналогичны одноступенчатому гидрокрекингу.

12.2.6. Макрокинетика процесса. В первую очередь гидрогенолизу подвергаются гетероатомные соединения, в результате чего выделяются сероводород, аммиак и вода. Кроме того, происходит гидрирование непредельных веществ. Полициклоарены и полициклоалканы гидрируются в алкилзамещенные моноциклы. Алканы расщепляются и изомеризуются. Значительно труднее происходит насыщение последнего ароматического кольца и гидрогенолиз алканов и моноциклоалканов.

Расщепление и изомеризация алканов являются реакциями первого порядка, гидрирование и деструктивное гидрирование – второго порядка. Однако при огромном избытке водорода последние реакции, сопровож­дающиеся торможением продуктами процесса, также описываются уравне­ниями первого порядка. Кажущаяся энергия активации гидрокрекинга вакуумного газойля составляет 140 – 250 кДж/моль при 380 – 420 оС.

Тепловой эффект процесса может колебаться в пределах от –208 до +834 кДж/моль сырья.

Расход водорода в процессе составляет 500 – 2000 м33 сырья. При этом, чем выше это соотношение, тем легче продукты процесса. Опти­маль­ными для гидрокрекинга являются температуры в диапазоне 300 – 420 оС. Низкие температуры не обеспечивают высокой скорости процесса. При более высоких температурах реакционная масса обогащена газообразными продуктами. Кроме того, при этом возможна интенсификация коксообразо­вания. Объемная скорость подачи сырья составляет 0,5 – 2,0 ч-1. Для дистиллятного сырья давление процесса равно до 7 МПа. Гидрокрекинг тяжелого сырья проводят при 20 – 30 МПа.

В промышленности существует несколько вариантов гидрокрекинга, в зависимости от фракционного состава сырья и от поставленной цели:

а) гидрокрекинг бензиновых фракций предназначен для получения сжиженных газов, изоалканов С4С5 , служащих легким высокооктановым компонентом для моторных топлив и сырьем в нефтехимическом синтезе;

б) гидрокрекинг средних дистиллятов (прямогонных и вторичных), фракции 200–350 оС проводят для получения высококачественных бензинов и реактивного топлива;

в) гидрокрекинг атмосферного и вакуумного газойлей, газойлей коксования и каталитического крекинга ведут для получения бензинов, реактивного и дизельного топлива;

г) гидрокрекинг тяжелых дистиллятов направлен на получение реактив­ного и дизельного топлив, смазочных масел, малосернистого котельного топлива и сырья для каталитического крекинга;

д) селектогидрокрекинг бензинов ведут с целью повышения октановых чисел бензинов; реактивного и дизельного топлив с пониженными температурами застывания; масел с улучшенными показателями качества, такими как цвет, стабильность, индекс вязкости, температура застывания;

е) гидродеароматизация.