Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мозговой. Х и Ф нефти игаза.doc
Скачиваний:
260
Добавлен:
23.03.2016
Размер:
3.15 Mб
Скачать

8.5. Коксование

Кокс образуется в жидкофазных термических процессах, в которых концентрация молекул в сотни раз выше, чем в газовой фазе. В результате этого выход продуктов поликонденсации значительно повышается по сравнению с процессами в газовой фазе. При этом следует отметить, что в термическом крекинге и пиролизе коксообразование – нежелательное явление. Однако есть промышленные процессы, в которых кокс является целевым продуктом. Известно применение кокса в качестве анодных масс в металлургии для получения твердых сплавов, например Ве2С, ТiC и др.; в производстве абразивных материалов (SiC, B4C, TiC); в ядерной энергетике (В4С, ZnC); в производстве конструкционных углеграфитных материалов.

Нефтяной кокс – это твердое вещество с псевдокристаллической или аморфной структурой и плотностью 1400 – 1500 кг/м3. Соотношение С: Н в коксе составляет 1,1 – 1,4. Его получают жидкофазным крекингом тяжелых остатков нефти (мазута, гудрона, крекинг-остатков) по схеме:

Арены Смолы Асфальтены Кокс Графит.

Алканы, циклоалканы, и алкены также способны коксоваться в результате процессов дегидроциклизации и ароматизации.

Переход аренов в кокс термодинамически выгоден, т. к. сопровождается уменьшением свободной энергии. В ряду бензол – нафталин – антрацен – пирен – графит запас свободной энергии на один атом углерода снижается в следующем порядке, кДж: 20,6 19,8 18,8 16,8 0.

При температурах коксования 450 – 520 оС парафино-нафтеновая часть сырья крекируется в основном до жидких и газообразных продуктов. Моно- и бициклическая ароматика превращается двумя способами:

1) крекингом, подобно парафино-нафтеновым углеводородам;

2) перераспределением молекул водорода при наличии в молекулах аренов нафтеновых циклов с подвижными атомами водорода.

В результате таких процессов одна часть молекул сырья превращается в насыщенные углеводороды и затем крекируется, а другая – становится еще более ароматизованной и пополняет фазу асфальтенов.

Смолы частично крекируются до газообразных и жидких продуктов, но преимущественно деалкилируются, теряют кислородсодержащие функцио­наль­ные группы, вследствие чего повышается их ароматизованность, и они превращаются в асфальтены.

Асфальтены уже при 300 оС разлагаются с образованием газовой и жидкой фаз и кокса.

Рентгеноструктурный анализ показывает, что кокс – это система хаотично расположенных трехмерно неупорядоченных графитоподобных кристаллитов с межплоскостным расстоянием 0,348 – 0,350 нм (у графита оно равно 0,335 нм). Наличие в химическом составе кокса водорода, серы, азота и некоторых других элементов и заместителей не дает возможности образовываться упорядоченной структуре, подобной графитовой.

8.6. Промышленные термические процессы

Теоретические разработки механизма термических процессов, происходящие при переработке нефти легли в основу технологического оформления ряда промышленных процессов.

8.6.1. Термический крекинг. К чисто термическому процессу относится термический крекинг, первая промышленная установка которого была пущена в 1912 г. с целью получения автобензина. Однако из-за постоянного ужесточения требований к качеству бензинов за последние 50 лет термический крекинг для этой цели уже не применяется, и классическая технология этого процесса перестала существовать. Эксплуатируемые в настоящее время установки «легкого» крекинга служат для получения вакуумного газойля и маловязкого котельного топлива. Современные крекинг-процессы включают, как правило, комплексную переработку тяжелого нефтяного сырья и содержат установки легкого крекинга (висбрекинга), при 400 – 450 оС, каталитического крекинга, гидроочистки, производства оксигенатов и т. д.

8.6.2. Промышленный пиролиз. Как уже упоминалось ранее, он предназначен для получения низших алкенов (этилена и пропилена), а также 1,3-бутадиена, стирола и некоторых других продуктов. Сырьем для процесса служат разнообразные нефтепродукты. В США – это главным образом газообразные углеводороды. В России, странах СНГ, Западной Европе, наряду с газообразными алканами, применяют бензиновые и керосино-газойлевые фракции. При пиролизе бензиновых фракций примерный состав продуктов процесса следующий, % масс.: метан 12 – 16; этилен 22 – 32; пропилен 10 – 17; фракция С4 5 – 12; арены С6С8 6 – 13; смолы 4 – 8. Кроме того, в процессе образуются водород, фракция С5 и др.

При пиролизе керосино-газойлевых фракций выход метана и этилена существенно снижается, пропилена почти не изменяется, но зато значительно возрастает доля жидких продуктов, в т. ч. смол, причем общее количество жидких продуктов может достигать 50 %.

Для повышения выхода низших олефинов из керосино-газойлевых фракций до уровня выхода из газообразных алкенов керосино-газойлевые фракции необходимо подвергнуть предварительной гидрообработке (гидро­очистке, гидрокрекингу, гидродеароматизации). Эти виды каталитической обра­ботки снижают количество ароматики в сырье, что приводит также к пониженному коксованию сырья.

8.6.3. Коксование. Промышленные процессы коксования проводят с использованием остаточного нефтяного сырья: мазута, полугудронов, гудронов, тяжелой пиролизной смолы, крекинг-остатков и др.

Промышленностью реализованы три различные технологии: 1) коксование в кубах; 2) замедленное коксование в необогреваемых камерах и 3) коксование в псевдоожижженом слое кокса-порошка.

Наибольшее распространение получил второй способ, который ведут при 480–520 оС и давлении 0,2–0,3 МПа. Продукты процесса – кокс, газ, бензин, легкий и тяжелый газойли. Соотношение продуктов процесса зави­сит от состава сырья, параметров процесса и аппаратурного оформления.