- •В.А. Павский
- •Оглавление
- •Часть 1. Понятие случайного события и его вероятности……..9
- •Часть 2. Случайные величины и функции распределения…….52
- •Часть 3. Предельные теоремы…………………………………………….130
- •Часть 4. Элементы математической статистики………………..141
- •Введение
- •Часть 1. Понятие случайного события и его вероятности
- •Операции над событиями
- •Кроме того, если выполнено условие
- •Следствия из аксиом
- •Из определения сразу следует, что
- •Элементы комбинаторики
- •Пример 5. Сколько существует размещений с повторениями при выборкеkшаров изn?
- •1.3 Вычисление вероятностей событий
- •1.3.1 Классический метод вычисления вероятностей
- •Пример.Поnящикам случайно распределяютсяnшаров. Считая, что ящики и шары различимы, найти вероятности следующих событий:
- •1.3.2 Геометрический метод вычисления вероятностей
- •1.3.3 Статистическое определение вероятности
- •1.3.4 Условная вероятность
- •Произвольны, причем рв.
- •Формула (6) считается определением, ниоткуда не выводится и является отражением здравого смысла. Поясним это на примере геометрического изображения событий (рис. 3).
- •Теорема умножения.ПустьА,в,тогда
- •1.4 Формула полной вероятности и формула Байеса (Bayes) Формула полной вероятности
- •Применяя теорему умножения получим
- •Применяя (9), получим
- •Формула Байеса
- •Вероятности ,, называютапостериорнымивероятностями гипотезВk, поскольку оценка происходит после того, как событиеАпроизошло.
- •1.5 Независимые испытания
- •1.6 Локальная теорема Муавра – Лапласа
- •Интегральная теорема Муавра-Лапласа
- •Функция - табулирована, ее значения приведены в табл. 4 приложения.
- •Сравнивая решение задачи п.1.5. А), б), можно предположить, что, так как – наивероятнейшее число, с большой вероятностью реализуется событие40k60, с центром в точкеk0:
- •1.8 Формула Пуассона
- •Часть 2. Случайные величины и функции распределения
- •Например, к дискретным случайным величинам относятся:
- •Свойства функции распределения.
- •Свойства плотности
- •Примеры основных распределений
- •2.1 Числовые характеристики случайных величин
- •2.1.1 Математическое ожидание, мода, медиана
- •Моменты
- •Свойства дисперсии
- •2.2 Вычисление числовых характеристик стандартных распределений
- •1. Биномиальное распределение.
- •Приложения нормального распределения
- •2.3 Функции от случайных величин
- •2.3.1 Функции от одного случайного аргумента
- •2.3.2 Многомерные случайные величины
- •2.3.3 Условные законы распределения
- •2.3.4 Моменты многомерных случайных величин
- •Свойства коэффициента корреляции
- •2.3.5 Случайные процессы
- •2.3.5.1 Марковские процессы
- •2.3.5.2 Непрерывные цепи Маркова
- •2.3.5.3 Потоки событий
- •2.3.6 Основы теории массового обслуживания
- •Часть 3. Предельные теоремы
- •Вместо (111), часто используют неравенство
- •3.1 Закон больших чисел
- •3.2 Центральные предельные теоремы
- •Часть 4. Элементы математической статистики
- •4.1 Оценка функций распределения
- •Свойства эмпирической функции распределения
- •4.2 Точечные оценки неизвестных параметров законов распределения
- •Итак, пусть имеем выборку (122). Для оценки математического ожидания
- •4.3 Доверительный интервал
- •Окончательно
- •4.4 Проверка статистической однородности
- •Заключение
- •Обозначения
- •Приложение
- •Значения некоторых числовых величин
- •Продолжение таблицы 5
- •Продолжение таблицы 7
- •Библиографический список
Элементы комбинаторики
Комбинаторика – раздел математики, занимающийся решением задач, связанных с выбором и расположением элементов из некоторой совокупности.
В классической теории вероятностей комбинаторика, в основном, используется для выбора и подсчета числа комбинаций событий с идентичными свойствами. Кроме того, первоначально комбинаторика применялась для нахождения вероятностей событий, обладающих различного вида симметриями.
Пример 1. Сколько существует различных k - мерных векторов, координаты которых составлены из чисел множества А = 1, 2, ..., n .
Решение. Будем исходить из того, что два вектора считаются равными, если соответствующие координаты представлены одинаковыми цифрами, иначе различные.
Число различных k -мерных векторов находим следующим образом.
Первой координатой может являться любое из n чисел множества А, второй - также любое из n чисел, то есть, для каждого фиксированного числа первой координаты имеем n вариантов для второй. Таким образом, всего имеем n n = n2 двумерных различных векторов, далее по индукции получаем, что всего различных k -мерных векторов будет nk.
Пример 2. Сколько существует различных трехзначных чисел?
Решение. Всего цифр десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. На первом месте может быть любая цифра, кроме нуля, на втором и третьем месте любая из десяти цифр. Следовательно, всего различных чисел 9 102 = 900.
Пример 3. Сколько существует различныхk- мерных векторов, у которых числовые значения координат , взятых из множестваА=1, 2, ...,n, не повторяются.
Решение. Аналогично примеру 1, первой координатой может являться любая из n цифр множества А, второй - любая из оставшихся (n – 1) цифр, не совпадающей с первой, и т.д. Таким образом, получаем всего
различных векторов.
В частном случае, при k = n имеем различных векторов. Это число обозначается (эн - факториал).
Замечание. Часто n! называют перестановками, так как n! количественно определяет число различных перестановок элементов, из которых они состоят. Например, число перестановок трехтомного собрания сочинений равно шести: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), где цифра означает номер тома.
Пример 4. Сколько существует различных k - мерных векторов, у которых числовые значения координат, взятых из множества А = 1, 2, ..., n, не только не повторяются, но и их координаты принадлежат различным подмножествам множества А. Напомним, что два множества считаются различными, если они отличаются хотя бы одним элементом.
Решение. Пусть х – число таких k - мерных векторов. Возьмем один из них. Всего существует k! перестановок координат этого вектора. Умножая k! на х, получим число векторов, удовлетворяющих условию примера 3, но тогда
.
Отсюда искомое число векторов равно
,
или
.
Если k n, то х = 0.
Каждый из примеров представляет собой достаточно распространенный способ выбора в комбинаторике.
Мы будем придерживаться «урновой» схемы: имеется сосуд, в котором находятся n тщательно перемешанных шаров различающихся только своими порядковыми номерами. Если из урны извлечено k шаров, то будем говорить, что имеем выборку объема k. Шары из урны извлекаются случайным образом, подобно лототрону, при этом извлечение шаров может осуществляться с возвращением или без возвращения.
При выборе с возвращением фиксируется номер шара, а сам он возвращается в урну; при выборе без возвращения - шар в урну не возвращается, то есть выборка не содержит повторяющихся шаров.
Итак, из урны последовательно извлекается k шаров. Сколько различных вариантов выборки объема k можно получить, если выбор осуществляется:
а) с возвращением, и порядок следования шаров в выборке важен. Число вариантов равно nk . Этот способ называется простым случайным выбором, и соответствует примеру 1;
б) без возвращения, и порядок следования элементов в выборке важен. Число вариантов равно . Способ выбора называется размещениями. В соответствие с примером 3, имеем
,
при k n, ;
в) без возвращения, порядок следования элементов в выборке не важен. Способ выбора называется сочетаниями, число вариантов равно и, в соответствие с примером 4, вычисляется по формуле:
,
при k n .
Рассмотрим несколько частных случаев, имеющих самостоятельное значение.
Определение. Выборкой объема k из n элементов с повторениями называется такая выборка, в которой любой из k ее элементов может повториться более одного раза.