
- •1.Общие положения
- •1.1. Экономические и экологические аспекты коррозии
- •1.2. Классификация корррозионных процессов.
- •1.3 Цели и методы коррозионных исследований
- •2. Теоретические основы химической коррозии
- •2.1. Коррозия металлов в жидких неэлектролитах
- •2.2. Газовая коррозия металлов
- •Контрольные вопросы.
- •3. Теория электрохимической коррозии
- •3.1. Механизм электрохимической коррозии
- •3.1.1. Коррозионные гальванические элементы
- •3.1.2. Термодинамическая возможность электрохимической коррозии. Стандартные электродные потенциалы
- •3.1.3. Обратимые электродные потенциалы. Уравнение Нернста
- •3.1.4. Необратимые электродные потенциалы. Диаграммы Пурбе.
- •3.2. Кинетика коррозионных процессов
- •3.2.1. Кинетика электродных процессов
- •Iкорр » k ÖaNa(Hg) (3.14.)
- •3.2.2. Коррозионные диаграммы
- •3.2.3. Кинетика катодных процессов
- •3.2.4. Кинетика анодных процессов
- •3.3. Пассивность металлов. Теории, практическое применение.
- •3.4. Многоэлектродные системы
- •3.5. Определение тока коррозии методом поляризационного сопротивления
- •3.6. Внутренние и внешние факторы электрохимической коррозии
- •3.6.1. Внутренние факторы электрохимической коррозии
- •3.6.2. Внешние факторы электрохимической коррозии
- •Контрольные вопросы
- •4. Методы защиты от коррозии
- •4.1. Защита металлов от коррозии покрытиями
- •4.1.1. Металлические защитные покрытия
- •4.1.2. Неметаллические неорганические защитные покрытия
- •4.1.3. Органические защитные покрытия
- •Взаимодействие лкм с твердой поверхностью
- •Способы нанесения лкм на поверхность
- •Органические защитные покрытия
- •4.2. Электрохимическая защита
- •4.2.1. Катодная защита
- •4.2.3. Анодная защита
- •4.2.4. Электрическая дренажная защита
- •4.3. Защита металлов от коррозии обработкой коррозионной среды
- •4.3.1. Ингибиторная защита
- •4.3.1.1. Ингибиторы кислотной коррозии металлов
- •4.3.1.2. Ингибиторы коррозии металлов в воде и водных растворах солей
- •4.3.1.3. Ингибиторы атмосферной коррозии металлов
- •4.3.1.4. Ингибиторы коррозии металлов в неводных жидких средах
- •4.3.2. Удаление и ввод кислорода.
- •4.3.3. Образование солевых пленок из солей жесткости
- •4.4. Защита металлов от коррозии путем воздействия на конструкцию
- •4.4.1. Предотвращение контактной коррозии.
- •4.4.2. Учет влияния напряженного состояния на скорость коррозии.
- •4.4.3. Учет распределения температуры между элементами конструкции
- •Контрольные вопросы
- •5. Примеры решения задач.
- •6. Лабораторный практикум
- •6.4.Оксидирование алюминия
- •6.5.Электролитическое цинкование стали
- •6.6.Фосфатирование стали
- •Рекомендуемая литература:
4.1.2. Неметаллические неорганические защитные покрытия
Согласно ГОСТ 9.008-82, для защиты от коррозии используют оксидирование, пассивирование, хроматирование и фосфатирование поверхности металла.
Оксидирование производится путем обработки поверхности металла химическим или электрохимическим способом, в результате чего на ней образуется оксидная пленка.
Широко распространена защита от коррозии путем оксидирования алюминия, магния, титана и их сплавов. Наиболее часто используют электрохимический способ создания оксидных слоев - так называемое анодирование. Самым распространенным является анодирование алюминия и его сплавов в растворах кислот. Анодные пленки на алюминии подразделяются на:
- тонкие барьерные пленки с толщиной 0,11 мкм; они используются при изготовлении электроизоляционных материалов;
- пленки средней толщины (150 мкм); они используются при защите от коррозии и при декоративной отделке изделий;
- толстые пленки (50300 мкм); они применяются для защиты поверхности от износа и истирания, а также для тепло- и электроизоляции.
Для увеличения коррозионной стойкости проводят пропитку или наполнение пористых оксидных пленок, а также их окрашивание путем обработки в растворах бихромата калия и других солей, зачастую при повышенной температуре.
Для защиты титана, магниевых и титановых сплавов от коррозии используют защитные анодные оксидные пленки.
Химическое оксидирование металлов (стали, алюминия, магния, никеля) применяют для получения оксидных пленок толщиной 1-5 мкм на сложнопрофилированных деталях. Такие пленки обладают более низкими антикоррозионными свойствами по сравнению с анодными и применяются в качестве подслоя под лакокрасочные покрытия (ЛКП) и в декоративных целях.
Чугун и стали оксидируют (воронят) в концентрированных щелочных растворах при высокой температуре. При этом за счет реакции с окислителями происходит образование тонкой пленки магнетита Fe3O4. Дополнительный защитный эффект обеспечивается пропитыванием оксидного слоя ингибированными маслами или воском (оружие, детали приборов).
Химическое оксидирование алюминия производят в электролитах, содержащих хромовый ангидрид, с получением окрашенных или бесцветных пленок. Защитные свойства пленок повышаются при их уплотнении в горячих растворах Na2SiO3 или Na2Cr2O7.
Декоративные или защитные свойства оксидированных изделий повышаются дополнительным покрытием бесцветным лаком или пропиткой в минеральных маслах.
Широкое распространение получили покрытия переходного состава от оксидных до фосфатных. Их называют оксифосфатными и для их получения используют растворы, содержащие фосфат цинка и фториды.
Для защиты от коррозии изделий в период эксплуатации и хранения конструкционных материалов - стали, меди, никеля, алюминия, магния и металла покрытия - кадмия, цинка, олова, серебра широко используют хроматное пассивирование. В результате химической обработки в растворах солей хромовой кислоты на поверхности металла образуются тонкие бесцветные или окрашенные в различные цвета пленки хроматов.
Электрохимическое хроматирование цинковых и кадмиевых покрытий обеспечивает получение более стойких по сравнению с химическим хроматированием защитных пленок.
Весьма эффективно хроматное химическое пассивирование меди, серебра, никеля и цинка в ультразвуковом поле.
Повышение коррозионной стойкости пассивных пленок (оксидных, хроматных и т. п.) обеспечивает дополнительная пропитка их гидрофобной кремнийорганической жидкостью ГКЖ-94, выпускаемой на Усольском ПО "Химпром".
Фосфатирование производится путем химической или электрохимической обработки поверхности металла, в результате которой на ней образуется пористая кристаллическая пленка фосфата металла, прочно сцепленная с металлом.
Фосфатные покрытия, обладающие хорошей адгезией к лакокрасочным покрытиям и резине, широко используются для грунтования поверхности изделий.
Фосфатирование стали и чугуна производится путем нанесения кистью или погружения изделий в раствор кислых солей фосфата железа и марганца (препарат "Мажеф").
Пропитка смазочными веществами увеличивает коррозионную стойкость оксидных, хроматных, фосфатных и оксифосфатных покрытий.
Для защиты от коррозии также используют различные по составу солевые пленки на металлах, например, MgF2 на магнии, ZnMoO4 на цинке и др.
К конверсионным металлическим относят также покрытия, полученные в результате химической обработки поверхности металла, так называемыми преобразователями продуктов коррозии (ПК). ПК наносят непосредственно на поверхность, загрязненную продуктами коррозии (преимущественно оксидами и гидроксидами). При этом происходит преобразование неструктурированных продуктов коррозии в достаточно прочные и плотные пленки на поверхности металлов, обладающие хорошей адгезией и защитной способностью.
Они могут служить промежуточным слоем для последующего нанесения ЛКП. Наиболее часто ПК применяют для защиты поверхности изделий из углеродистых и малолегированных сталей, и поэтому часто используют термин "модификатор ржавчины" или "преобразователь ржавчины".
ПК применяются в виде растворов, суспензий и эмульсий. Большинство современных ПК представляют собой композиции, основным компонентом которых является фосфорная кислота. Разработаны модификаторы на основе оксикарбоновых многоосновных кислот, таннина, сернокислого аммонолигнина и т.п.
ПК в зависимости от характера взаимодействия с продуктами коррозии подразделяются на группы:
- преобразователи, химически взаимодействующие с металлами и продуктами коррозии превращающие их в малорастворимые соли (фосфаты железа, цинка, марганца, бария и т. п.);
- стабилизаторы продуктов коррозии, превращающие метастабильные фазы гидроксидов железа в более устойчивые формы (магнетит и др.);
- пенетрационные (пропитывающие) составы, обладающие большой проникающей способностью в пористых пленках и уплотняющие их (масла, алкидные смолы и др.);
- грунтовки - модификаторы, образующие на поверхности металла пленку грунта под ЛКП.
В состав ПК вводят пигменты, ингибиторы, гидрофобизаторы, биоциды и др. вещества, повышающие защитную способность покрытий. Вязкость ПК изменяется в широких пределах : от весьма подвижных водных растворов (П-1П) до очень вязких (АПРЛ-2 и др.). В зависимости от вязкости выбирают способ нанесения ПК : пневматическое распыление, струйный облив, окунание, кистью. Перед нанесением ПК с обрабатываемой поверхности удаляют сыпучие, рыхлые и пластовые продукты коррозии.
ПК применяют при защите металлоконструкций в полевых условиях (мосты, опоры ЛЭП, трубопроводы, оборудование ГЭС, резервуары, речные и морские суда, кузова автомобилей, оборудование шахт и др.).