
- •Предмет математичного моделювання.
- •Моделювання в економіці.
- •3. Класификація економіко – математичних моделей. Формальна класіфикація моделей.
- •4. Задачі планування та організації виробництва.
- •4.1. Задача про максимальну рентабельність підприємства.
- •4.2. Задача про завантаження обладнання.
- •Питання для самоконтролю.
- •Тема 1. Предмет, методи і завдання дисципліни. Класифікація задач. Лекція 2
- •Задачі математичного програмування.
- •2. Класифікація методів математичного програмування.
- •3. Модель міжгалузевого балансу „Витрати - випуск”.
- •Коефіціети прямих та побічних витрат.
- •Питання для самоконтролю.
- •Тема 2.Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 3 Тема лекції: Основні теореми та властивості задач лінійного програмування (лп).
- •1. Загальна форма задачі лінійного програмування (лп).
- •2. Форми запису загальної задачі лп.
- •3. Основні теореми та властивості задачі лп.
- •Питання для самоконтролю.
- •Тема 2.Загальна задача лінійного програмування та деякі зметодів її розв’язування Лекція 4 Тема лекції: Графічний метод розв’язування задач лп.
- •2. Графічний метод розв’язування задач лп з
- •3. Приклади розв’язування задач лп графічним методом.
- •Питання для самоконтролю.
- •Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язання Лекція 5 Тема лекції: Розв’язання задач лп симплекс-методом.
- •1. Симплекс-метод із стандартним базисом.
- •2. Теоретичні основи симплекс-метода.
- •3. Поняття виродженності задач лп.
- •Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 6 Тема лекції: Розв’язання задач лп симплекс-методом (продовження)
- •4. Правило уникнення зациклювання при застосуванні симплекс-методу.
- •5. Метод штучної базиси розв’язування задач лп.
- •6. Приклад вирішення задачі лп методом штучної бази.
- •Питання для самоконтролю.
- •Тема 3. Транспортна задача. Лекція 7 Тема лекції: Транспортна задача
- •1 Економічна та математична моделі транспортної задачі.
- •2 Основні теореми транспортної задачі.
- •3. Метод північно-західного кута (діагональний.)
- •Тема 3. Транспортна задача. Лекція 8 Тема лекції: Транспортна задача (продовження)
- •5. Метод потенціалів.
- •6. Приклад вирішення транспортної задачі.
- •7. Ускладнені задачі транспортного типу.
- •Тема 3. Транспортна задача. Лекція 9 Тема лекції: Транспортна задача (продовження)
- •Задача про призначення.
- •Розподільчи задачі загального типу.
- •Модель розподільчої задачі
- •Етапи розв’язання розподільчої задачі
- •Приклад вирішення задачі типу тз.
- •Питання для самоконтролю.
- •Тема 4. Теорія двоїстості та аналіз лінійних моделей оптимізаційних задач. Лекція 10. Тема лекції: Двоїста задача лінійного програмування
- •1 Математичні моделі двоїстих задач.
- •3 Взаємозв’язок розв’язків прямої та двоїстої задач.
- •Питання для самоконтролю.
- •Тема 5. Цілочислові та параметричні задачі лінійного програмування
- •Тема лекції: Узагальнення задачі лінійного програмування.
- •Задачі цілочислового програмування.
- •2. Метод Гоморі.
- •3. Параметричне лінійне програмування.
- •Питання для самоконтролю.
- •Тема 6. Елементи теорії ігор
- •Тема лекції: Матричні ігри
- •1. Постановка задач теорії парних ігор з нульовою сумою.
- •Задачі з сідловою точкою. Задачі в чистих стратегіях.
- •Ігри в мішаних стратегіях. Основна теорема теорії ігор.
- •Тема 6. Елементи теорії ігор
- •Тема лекції: Матричні ігри (продовження)
- •4. Графічний метод розв’язання теорії ігор.
- •5. Зведення задач теорії ігор до задач лп.
- •Зведення задачі лп до матричної гри.
- •Питання для самоконтролю.
- •Тема 7. Нелінійні оптимізаційні моделі економічних систем
- •Тема лекції: Задача дробово-лінійного програмування
- •Постановка задачі дробово-лінійного програмування.
- •2. Приведення задачі дробово-лінійного програмування до задачі лінійного програмування.
- •3. Розв’янання задач дробово-лінійного програмування.
- •4. Графічне розв’язання задачі дробово-лінійного програмування.
- •Питання для самоконтролю.
- •Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- •Тема лекції: Задачі нелінійного програмування
- •1. Класичні методи розв’язання задач нелінійного програмування.
- •2. Метод множників Лагранжа.
- •3. Задачі опуклого програмування.
- •Задачі опуклого програмування.
- •Питання для самоконтролю.
- •Тема 7. Нелінійні оптимізаційні моделі економічних систем.
- •Тема лекції: Основні поняття теорії варіаційного числення
- •Поняття про функціонал.
- •2. Екстремум функціоналу.
- •3. Класичні задачі варіаційного числення.
- •4. Варіація функції та приріст функціоналу.
- •5. Перша та друга варіації функціоналу.
- •Питання для самоконтролю.
Тема 2. Загальна задача лінійного програмування та деякі з методів її розв’язування Лекція 6 Тема лекції: Розв’язання задач лп симплекс-методом (продовження)
Мета: ознайомити студентів з методами розв’язання задач ЛП симплекс – методов із стандартним базисом, симплекс-методом зі штучним базисом.
План лекції
Правило уникнення зациклювання при застосуванні симплекс-методу.
Метод штучної базиси розв’язування задач ЛП.
Приклад вирішення задачі ЛП методом штучної бази.
Література:
Лавріненко Н.М., Латинін С.М., Фортуна В.В., Безкровний О.І. Основи економіко-метематичного моделювання: Навч. Посіб. - Львів: «Магнолія 2006», 2010.- 540с.
Іванюта І. Д. Практикум з математичного програмування: Навчальний посібник / І. Д. Іванюта, В. І. Рибалка, І. А. Рудоміно-Дусятська. – К.: «Слово», 2008. - 296 с.
Кучма М. І. Математичне програмування: приклади і задачі: Навчальний посібник / М.І. Кучма. – Львів: «Новий Світ - 2000», 2006. - 344 с.
Акулич И.Л. Математическое программирование в примерах и задачах. – М.: Высшая школа, 1993. – 336 с.
4. Правило уникнення зациклювання при застосуванні симплекс-методу.
Якщо на будь якому етапі розрахунків виникає невизначеність у виборі ключового рядка, тобто виявляється кілька однакових мінімальних симплексних відношень, то необхідно вибирати рядок, для якого відношення елементів наступного стовпчика, що не входить у базис, до відповідних елементів ключового стовпчика є найменшим. При цьому ділення необхідно виконувати і на від’ємні елементи, тобто отримані відношення можуть бути від’ємними.
Якщо, при цьому знову виявляються однакові мінімальні симплексні відношення, то складають відношення елементів наступного стовпчика, і так роблять доти, доки ключовий рядок не визначиться однозначно.
Приклад 2. Вирішити задачу ЛП
за умов
5. Метод штучної базиси розв’язування задач лп.
Застосовується у тих випадках, коли в вихідній задачі ЛП, яка записана у канонічному вигляді, в системі обмежень немає необхідної кількості одиничних ортогональних незалежних векторів Pj, тобто важко вказати початковий опорний план.
М-метод полягає у використанні правил симплекс – методу до так званої задачі ЛП. Вона отримується із початкової додованням до лівої частини системи рівнянь таких штучних одиничних векторів з відповідними невід’ємними штучними змінними, щоб знову отримати m одиничних ортогональних лінійно незалежних векторів.
У цільовій функції задачі ЛП штучні змінні мають коефіцієнт - М (f(x)→max) або +М (f(x)→min), де під М ми розуміємо досить велике додатне число.
При розв’язанні цієї задачі симплекс-методом оцінки Δj будуть залежити від М. Для порівняння оцінок, треба пам’ятати, що М – достатньо велике додатне число, тому із базису будуть виключатися у першу чергу штучні вектори.
Якщо із базису всі штучні вектори вийшли, то ми отримали вихідну задачу.
Якщо оптимальний розв’язок М – задачі містить штучні змінні або М – задача нерозв’язна, то початкова задача також нерозв’язна.