Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_fizika_Vosstanovlen.docx
Скачиваний:
13
Добавлен:
26.09.2019
Размер:
886.81 Кб
Скачать

18. Кинетическая энергия твердого тела.

Рассмотрим вращение тела вокруг неподвижной оси, которую назовем осью Z (рис.). Линейная скорость точки с массой mi, равна vi ωR, где R, —расстояние точки до оси Z. Для кинетической энергии i-й материальной точки тела получаем выражение:

Полная кинетическая энергия тела

Поскольку входящая сюда сумма представляет собой момент инерции относительно оси Z, получаем: (1.100)

Вычислим работу, совершаемую внешней силой при вращении твердого тела. Элемент работы  .

Последнее выражение есть момент внешней силы N , таким образом, (1.101)

Полная работа может быть вычислена с помощью следующих формул: (1.202)

Приведем в заключение формулу, описывающую кинетическую энергию тела, совершающего плоское движение — поступательное, со скоростью Vc и вращение с частотой ω): (1.103)

Кинетическая энергия при плоском движении слагается из энергии поступательного движения со скоростью центра инерции тела и энергии вращения вокруг оси, проходящей через центр инерции.

19. Постулаты Эйнштейна. Преобразования Лоренца. Инварианты преобразований.

В своей работе Эйнштейн без единого нового эксперимента, проанализировав и обобщив уже известные опытные факты, впервые изложил идеи теории относительности, которые коренным образом изменили привычные представления о свойствах пространства и времени.

Теория относительности Эйнштейна состоит из двух частей: частной и общей теории относительности. В 1905 г. Эйнштейн опубликовал основные идеи частной или специальной теории относительности, в которой рассматриваются свойства пространства и времени, справедливые при условиях, когда можно пренебречь тяготением тел, т.е. считать их гравитационные поля 'пренебрежимо малыми. Теория относительности, в которой рассматриваются свойства пространства и времени в сильных гравитационных полях, называется общей теорией относительности. Принципы общей теории относительности были изложены Эйнштейном на 10 лет позже, чем частной, в 1915 г.

В основу специальной теории относительности Эйнштейна легли два постулата, т.е. утверждения, которые принимаются за истинные в рамках данной научной теории без доказательств (в математике такие утверждения называются аксиомами).

1   постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково.

2  постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.

Анализируя 1 постулат Эйнштейна, мы видим, что Эйнштейн расширил рамки принципа относительности Галилея, распространив его на любые физические явления, в том числе и на электромагнитные. 1 постулат Эйнштейна непосредственно вытекает из опыта Майкельсона-Морли, доказавшего отсутствие в природе абсолютной системы отсчета. Из результатов этого нее опыта следует и 2 постулат Эйнштейна о постоянстве скорости света в вакууме, который тем не менее вступает в противоречие с 1 постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и галилеево правило сложения скоростей, вытекающее из галилее-ва правила преобразования координат (см. п. 10). Следовательно,преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.

Преобразования Лоренца и инварианты этих преобразований. Основы СТО были заложены Эйнштейном. Эта теория представляет современную физическую теорию пространства и времени, в которой полагается что время однородно и изотропно. В основе СТО лежат постулаты Эйнштейна. Постулаты: 1) Принцип относительности: никакие опыты, проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной системы отсчета к другой. (согласно этому постулату все ИСО равноправны, то есть явления во всех системах протекают одинаково). 2) Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех ИСО. (согласно этому постулату, постоянство скорости света – фундаментальное свойство природы, которое констатируется как факт). Преобразования Лоренца. Рассмотрим две ИСО K (с координатами x,y,z) и К’ (с координатами x’,y’,z’), движущимися относительно K (вдоль оси x) со скоростью v=const. Пусть в начальный момент времени начала координат O и O’ совпадают, излучается световой импульс. Согласно второму постулату Эйнштейна скорость света в обеих системах одинакова и равна c. Поэтому если за время t в системе К сигнал дойдет до некоторой точки, пройдя расстояние x=ct, то в K’ координата светового импульса в момент движения точки A x’=ct’. Вычитая получаем x’-x=c(t’-t). Так как x=!x’, то t!=t, то есть отсчет времени в системах К и K’ различен – отсчет времени имеет относительный характер (в классической физике считается, что время во всех ИСО течет одинаково). Эйнштейн показал, что в теории относительности классические преобразования Галилея, описывающие переход от одной системы отсчета к другой, заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна. Эти преобразования были предложены Лоренцом в 1904 году, еще до появления СТО и имеют вид: 1) при К->K’. x’=(x-vt)/√(1-β²), y’=y, z’=z, t’=(t-vx/c²)/√(1-β²); 2) при К’->K x=(x’+vt’)/ √(1-β²), y=y’, z=z’, t=(t’+vx’/c²)/√(1-β²); (примечание β=v/c ). Из преобразований Лоренца следует важный вывод о том, что как расстояние, таки промежуток времени между двумя событиями меняются при переходе от одной ИСО к другой. Инварианты преобразований: инварианты – величины, которые не изменяются при переходе от одной ИСО к другой. с=3*108 м/с. Интервал между двумя событиями ∆S= √(c2∆t2-∆x2-∆y2-∆z2). E=c√(p2+m02c2), (E2/c2)-p2= m02c2. (E2/c2)-p2=inv.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]