Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVET_PO_MATANU.doc
Скачиваний:
27
Добавлен:
25.09.2019
Размер:
2.39 Mб
Скачать

Главное значение несобственного интеграла на бесконечном промежутке интегрирования

   Может оказаться, что несобственного интеграла в смысле (9.3) нет, но существует интеграл в смысле а = b,

,

и это значение интеграла называется его главным значением:

.

   Если функция f(x) нечётная, то интеграл по симметричному промежутку (- а, + а) равен нулю, и поэтому для нечётной функции

.

   Если функция f(x) чётная, то интеграл по симметричному промежутку (- а, + а) равен удвоенному значению интеграла по половине промежутка интегрирования, и поэтому для чётной функции

.

Например,

.

Геометрический смысл несобственных интегралов с бесконечным пределом интегрирования

   Несобственным интегралам можно придать смысл площади бесконечной фигуры.    Пример 1. Вычислить  .    Решение. По определению имеем

.

Для нахождения интеграла, стоящего под знаком предела, воспользуемся формулой Ньютона-Лейбница

.

Тогда

,

т.е. искомый несобственный интеграл сходится к 1.    Аналогично, можно убедиться, что интеграл

сходится к  , если m > 1, и расходящимся, если m ≤ 1.     Геометрический смысл этого результата состоит в том, что среди всех кривых вида   гипербола   является своеобразным "порогом". Если кривая данного вида на интервале [1; + ∞) лежит ниже гиперболы, то полубесконечная фигура имеет конечную площадь. Если же кривая лежит выше или совпадает с гиперболой  , то соответствующая фигура имеет бесконечную площадь.

   Пример 2. Вычислить  .    Решение. Исследуем на сходимость интегралы   и  :

т.е. первый из интегралов сходится к 1. Но

т.е. этот интеграл расходится и, следовательно, расходится несобственный интеграл  .

Вопрос 68. Формула Ньютона-Лейбница. Интегралы по симметричным промежуткам от чётных и нечётных функций. Оценки интегралов. Интегрально среднее.

Простым и удобным методом вычисления определенного интеграла   от непрерывной функции является формула Ньютона-Лейбница:

Применяется этот метод во всех случаях, когда может быть найдена первообразная функции F(x) для подынтегральной функции ƒ (х).

Например,

При вычисленииопределенных интегралов широко используется метод замены переменной и метод интегрирования по частям.

39.2. Интегрирование подстановкой (заменой переменной)

Пусть для вычисления интеграла от непрерывной функции

сделана подстановка х = φ(t).

Теорема 39.1. Если:

1) функция х = φ(t) и ее производная х' = φ'(t) непрерывны при t є [а;β];

2) множеством значений функции х = φ(t) при t є [а,β] является отрезок [а; b];

3) φ(а)=а и φ(β)=b.

то

▼Пусть F(x) есть первообразная для ƒ(х) на отрезке [а;b]. Тогда по формуле Ньютона-Лейбница Так как (F(φ(t))' = f(φ(t)) - φ'(t), то F(φ(t)) является первообразной для функции f(φ(t)) -φ'(t), t  [а;β]. Поэтому по формуле Ньютона—Лейбница имеем

Формула (39.1) называется формулой замены переменной в определенном интеграле. Отметим, что:

1) при вычислении определенного интеграла методом подстановки возвращаться к старой переменной не требуется;

2) часто вместо подстановки х = φ(t) применяют подстановку t = g(x);

3) не следует забывать менять пределы интегрирования при замене переменных!

Пример 39.1. Вычислить

Решение: Положим х = 2 sin t, тогда dx = 2 cos t dt. Если х=0, то t = 0; если x = 2, то t = . Поэтому

  39.3. Интегрирование по частям

Теорема 39.2. Если функции u = u(х) и v = v(x) имеют непрерывные производные на отрезке [а; b], то имеет место формула

▼На отрезке [а; b] имеет место равенство (uv)' = u'v+uv'. Следовательно, функция uv есть первообразная для непрерывной функции u'v+uv'. Тогда по формуле Ньютона-Лейбница имеем:

Следовательно,

Формула (39.2) называется формулой интегрирования по частям для определенного интеграла.

 

Пример 39.2. Вычислить

Решение: Положим

Применяя формулу (39.2), получаем

Пример 39.3. Вычислить интеграл

Решение: Интегрируем по частям. Положим

Поэтому

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]