Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVET_PO_MATANU.doc
Скачиваний:
27
Добавлен:
25.09.2019
Размер:
2.39 Mб
Скачать

Вопрос 18. Теорема Кронекера-Капелли. Решение систем линейных алгебраических уравнений в соответствии с теоремой Кронекера-Капелли.

Необходимость

Пусть система совместна. Тогда существуют числа   такие, что  . Следовательно, столбец   является линейной комбинацией столбцов   матрицы  . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что  .

Достаточность

Пусть  . Возьмем в матрице   какой-нибудь базисный минор. Так как  , то он же и будет базисным минором и матрицы  . Тогда согласно теореме о базисном миноре последний столбец матрицы   будет линейной комбинацией базисных столбцов, то есть столбцов матрицы  . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы 

Следствия

Количество главных переменных системы равно рангу системы.

Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной алгебре — это система уравнений вида

(1)

Система линейных уравнений от трёх переменных определяет наборплоскостей. Точка пересечения является решением.

Здесь   — количество уравнений, а   — количество неизвестных. x1x2, …, xn — неизвестные, которые надо определить. a11a12, …, amn — коэффициенты системы — и b1b2, … bm — свободные члены — предполагаются известными[1]. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[2].

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1)c2(1), …, cn(1) и c1(2)c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2)c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.

Вопрос 21. Прямая на плоскости и в пространстве.. Взаимосвязь различных видов уравнений прямой.

Рассмотрим различные виды уравнений прямой на плоскости.

Пусть прямая проходит через точку М0 (x0,y0) перпендикулярно вектору n = {A,B}. Тогда вектор , где М(х,у) — произвольная точка прямой, ортогонален n. Поэтому координаты любой точки данной прямой удовлетворяют уравнению

А(х — х0) + В(у — у0) = 0 - (7.3)

уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.

Замечание. Вектор n называется нормалью к прямой.

Преобразуем уравнение (7.3) к виду:

Ах + Ву + (-Ах0 — Ву0) = 0.

Обозначив -Ах0 — Ву0 = С, получим общее уравнение прямой:

Ах + Ву + С = 0. (7.4)

Получим теперь уравнение прямой, проходящей через точку М0 (x0,y0) параллельно вектору q = {l,m}. Так как вектор , где М(х,у) — произвольная точка прямой, коллинеарен q, координаты любой точки данной прямой удовлетворяют уравнению

, (7.5)

называемому каноническим уравнением прямой. Вектор q при этом называется направляющим вектором прямой. В частности, если прямая проходит через точки М111) и М222), ее направляющим вектором можно считать , и из уравнения (7.5) следует:

 - (7.6)

параметрические уравнения прямой.

Для прямой l, не параллельной оси Оу, можно ввести так называемый угловой коэффициент k — тангенс угла, образованного прямой и осью Ох, и записать уравнение

у l прямой в виде:

у = kx + b - (7.8)

Прямая и плоскость в пространстве. Уравнения плоскости и прямой в пространстве. Угол между плоскостями. Угол между прямой и плоскостью.

Отметим, что многие утверждения и формулы, касающиеся плоскости в пространстве, доказываются и выводятся так же, как при изучении прямой на плоскости, поэтому в этих случаях будут даваться ссылки на предыдущую лекцию.

Плоскость в пространстве.

Получим сначала уравнение плоскости, проходящей через точку М0,z0) перпендикулярно вектору n = {A,B,C},называемому нормалью к плоскости. Для любой точки плоскости М(х, у, z) вектор М0М = {x - x, y - y0 , z - z0) ортогонален вектору n, следовательно, их скалярное произведение равно нулю:

A(x - x0) + B(y - y0) + C(z - z0) = 0. (8.1)

Получено уравнение, которому удовлетворяет любая точка заданной плоскости — уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.

После приведения подобных можно записать уравнение (8.1) в виде:

Ax + By + Cz + D = 0, (8.2)

где D = -Ax- By- Cz0. Это линейное уравнение относительно трех переменных называют общим уравнением плоскости.

Неполные уравнения плоскости.

Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным.

Рассмотрим возможные виды неполных уравнений:

1)      D = 0 — плоскость Ax + By + Cz = 0 проходит через начало координат.

2)      А = 0 — n = {0,B,C}Ox, следовательно, плоскость By + Cz + D = 0 параллельна оси Ох.

3)      В = 0 — плоскость Ax + Cz +D = 0 параллельна оси Оу.

4)      С = 0 — плоскость Ax + By + D = 0 параллельна оси Оz.

5)      А = В = 0 — плоскость Cz + D = 0 параллельна координатной плоскости Оху (так как она параллельна осям Ох иОу).

6)      А = С = 0 — плоскость Ву + D = 0 параллельна координатной плоскости Охz.

7)      B = C = 0 — плоскость Ax + D = 0 параллельна координатной плоскости Оуz.

8)      А = D = 0 — плоскость By + Cz = 0 проходит через ось Ох.

9)      B = D = 0 — плоскость Ах + Сz = 0 проходит через ось Оу.

10)  C = D = 0 - плоскость Ax + By = 0 проходит через ось Oz.

11)  A = B = D = 0 — уравнение Сz = 0 задает координатную плоскость Оху.

12)  A = C = D = 0 — получаем Ву = 0 — уравнение координатной плоскости Охz.

13)  B = C = D = 0 — плоскость Ах = 0 является координатной плоскостью Оуz.

Если же общее уравнение плоскости является полным ( то есть ни один из коэффициентов не равен нулю), его можно привести к виду: (8.3) называемому уравнением плоскости в отрезках. Способ преобразования показан в лекции 7. Параметры а, b и сравны величинам отрезков, отсекаемых плоскостью на координатных осях.

Всякая плоскость в пространстве, снабженном декартовой системой координат, есть множество вех точек, удовлетворяющих некоторому линейному уравнению вида:

Всякую плоскость в пространстве можно задать, указав какую – ни будь ее точку и два произвольных приложенных к этой точке неколлинеарных вектора: и .

-векторноеур-е плоскости.

(7)- Уравнение (7) называют уравнением плоскости в отрезках на осях, т.к. числа a, b, c имеют простой геометрический смысл: а - абсцисса точки пересечения плоскости с осью Ох, b - ордината точки пересечения плоскости с осью Оу, с - аппликата точки пересечения плоскости с осью Oz.

-параметрическое уравнение прямой :

где - фиксированная точка, лежащая на прямой; -направляющий вектор.

- это называют уравнениями прямой, проходящей через две заданные точки и .

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A1 x + B1 y + C1 z + D1 = 0, A2 x + B2 y + C2 z + D2 = 0;  

2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями:

=

3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

ВИДЫ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ:

Уравнение прямой с угловым коэффициентом:y= kx + b

Уравнение прямой в отрезках:

Общее уравнение прямой:

Уравнение с данным направляющим вектором и проходящей через данную точку:

Уравнение прямой с данным вектором нормали

и проходящей через данную точку:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]