
- •Вопрос 2.Множества и основные действия над множествами. Свойства действий над множествами.
- •Вопрос 3. Важнейшие числовые системы (натуральные, целые, рациональные и вещественные числа).
- •Вопрос 4.Важнейшие математические структуры (пространство n измерений. Метод координат).
- •Вопрос 5. Линейное пространство и его важнейшие свойства.
- •§2. Линейно зависимые и линейно независимые системы элементов.
- •§8. Линейные операторы.
- •§9. Действия с линейными операторами.
- •Вопрос 6. Сложение векторов, умножение векторов на числа. Вычитание векторов.
- •Вопрос 7. Линейная зависимость (независимость) элементов. Размерность и базис линейного пространства.
- •Вопрос 8. Норма элемента, расстояние между элементами пространства. Ортонормированный базис.
- •Вопрос 9. Матрицы и основные действия над матрицами. Свойства действий над матрицами.
- •Вопрос 10. Определители матриц. Основные свойства определителей.
- •Вопрос 11. Миноры и алгебраические дополнения. Теорема разложения.
- •Вопрос 12. Обратная матрица. Вычисление обратной матрицы.
- •Вопрос 13. . Ранг матрицы. Практические приёмы вычисления ранга матрицы.
- •Вопрос 15. Системы линейных алгебраических уравнений.
- •Вопрос 16. Решение систем методом Крамера
- •17.Решение систем матричным методом.
- •Вопрос 18. Теорема Кронекера-Капелли. Решение систем линейных алгебраических уравнений в соответствии с теоремой Кронекера-Капелли.
- •Вопрос 21. Прямая на плоскости и в пространстве.. Взаимосвязь различных видов уравнений прямой.
- •Вопрос 23-24. Плоские кривые второго порядка (эллипс, гипербола, парабола). Канонические уравнения кривых второго порядка.
- •Вопрос 25. Последовательности. Определение, способы задания, действия с последовательностями.
- •26.Предел последовательности. Сходимость. Второй замечательный предел
- •27.Свойства сходящихся последовательностей.
- •28.Определение функции. Способы задания функции.
- •29.Предел функции. Непрерывность в точке, на интервале. Свойства.
- •Вопрос 27. . Основные теоремы о пределах.
- •Вопрос 28. Бесконечно малые величины, основные теоремы о бесконечно малых.
- •Вопрос 29. Бесконечно большие величины, связь бесконечно малых с бесконечными величинами.
- •Вопрос 36. .Дифференцируемость функции, первый дифференциал и производная первого порядка.. Связь непрерывности и дифференцируемости
- •Вопрос 31. Правила дифференцирования. Таблица производных.
- •Вопрос 39. Основные теоремы дифференциального исчисления (теоремы Ферма, Ролля).
- •Вопрос 40. Теорема Лагранжа (формула конечных приращений). Связь теоремы Коши с теоремой Лагранжа.
- •Вопрос 41.Теорема Коши́
- •Вопрос 43. Формула Тейлора
- •42.Раскрытие неопределенности по правилу Лопиталя.
- •Вопрос 45. Функции нескольких переменных. Поверхности и линии уровня, поверхности и кривые безразличия.
- •47.Предел функции нескольких переменных. Непрерывность функции нескольких переменных в точке и в области.
- •48.Дифференцирование функций нескольких переменных.
- •Вопрос 50. Производные и дифференциалы высших порядков. Приложения дифференциального исчисления функций нескольких переменных в моделировании социально экономических процессов.
- •Вопрос 51. Локальные и условные экстремумы функций нескольких переменных.
- •Вопрос 53. Первообразная и неопределённый интеграл. Таблица элементарных интегралов.
- •54. Свойства неопределённого интеграла.
- •Вопрос 55. Интегрирование заменой переменной. Интегрирование методом подстановки.
- •56.Метод интегрирования по частям (с выводом)
- •57.Разложение рациональной функции на простейшие дроби.
- •58.Разложение рациональной функции на простейшие дроби.
- •59.Интегрирование простейших иррациональностей. Подстановки Эйлера.
- •60.Биномиальный интеграл.
- •61.Интегрирование функции .
- •62.Определенный интеграл и его геометрический смысл.
- •63.Основные свойства определенного интеграла.
- •64.Замена переменной в определенном интеграле
- •65.Вычисление определенного интеграла по частям.
- •Вопрос 67. Интеграл с переменным верхним пределом. Интегралы по бесконечным промежуткам.
- •Главное значение несобственного интеграла на бесконечном промежутке интегрирования
- •Геометрический смысл несобственных интегралов с бесконечным пределом интегрирования
- •Вопрос 68. Формула Ньютона-Лейбница. Интегралы по симметричным промежуткам от чётных и нечётных функций. Оценки интегралов. Интегрально среднее.
- •71.Вычисление площади плоской фигуры.
- •72.Вычисление длины дугиплоской кривой.
- •73.Вычисление площади и объема поверхности тела вращения.
- •Вопрос 75. Признаки сходимости интегралов по бесконечным промежуткам.
- •Вопрос 76. Интегралы от разрывных функций. Признаки сходимости интегралов от разрывных функций.
Вопрос 53. Первообразная и неопределённый интеграл. Таблица элементарных интегралов.
Первообразная и неопределённый интеграл
Основной задачей дифференциального исчисления является нахождение производной f '(x) или дифференциала f '(x)dx данной функции f(x) В интегральном исчислении решается обратная задача: Дана функция f(x); требуется найти такую функцию F(x), производная которой равна f(x) или дифференциал которой равен f(x)dx в области определения функции f(x), т.е. в этой области функции f(x) и F(x) связаны соотношением
F'(x)=f(x)
или
dF(x)= F'(x)dx= f(x)dx
Определение 1: Функция F(x) называется первообразной функцией для данной функции f(x), если для любого x из области определения f(x) выполняется равенство F'(x)= f(x) или dF(x)= f(x)dx Из дифференциального исчисления известно что если две функции f(x) и j(x) отличаются друг от друга на постоянную величину, то производные или дифференциалы этих функций равны, т.е. если
f(x) = j(x) + C
то
f '(x) = j'(x)
или
f '(x)dx = j'(x)dx
Известно также, что, и наоборот, если две функции f(x) и j(x) имеют одну и ту же производную или один и тот-же дифференциал, то они отличаются друг от друга на постоянную величину, т.е. если
f '(x) = j'(x) или df(x) = dj(x),
то
f(x) = j(x) + С
Отсюда непосредственно следует, что если в формуле y = F(x) + C мы будем придавать постоянной C все возможные значения, то получим все возможные первообразные функции для функции f (x) Определение 2: Множество F(x) + C всех первообразных функций для данной функции f (x) , где C принимает все возможные числовые значения, называется неопределенным интегралом от функции f (x) и обозначается символом
Таким образом, по определению,
где
F'(x)
= f (x) или
dF(x)
= f(x)dx
иС-
произвольная постоянная. В последней
формуле f(x)
называется
подинтегральной
функцией,
f(x)dx-
подинтегральным
выражением,
а символ
-
знаком неопределенного интеграла.
Неопределенным
интегралом называют не только множество
всех первообразных, но и любую функцию
этого множества.
Таким образом,
неопределенный
интеграл представляет собой любую
функцию, дифференциал которой равен
подинтегральному выражению, а производная
равна подинтегральной функции
Нахождение
первообразной по данной функции f(x)
называется
интегрированием
и является действием, обратным
дифференцированию.
Таблица элементарных интегралов
54. Свойства неопределённого интеграла.
Свойства неопределённого интеграла. Таблица элементарных интегралов
iСвойства неопределенного интеграла базируются на свойствах дифференциала функции.
Напомним, что если
–
дифференцируемая в точке
функция,
то произведение
является
дифференциалом функции
в
точке
соответственно
приращению аргумента
.
Для дифференцируемых
функций
и
правила
действий над их дифференциалами
аналогичны правилам вычисления
производных (здесь и везде далее
–
произвольное число), а именно:
;
;
;
;
;
.
Для первообразной
функции
из
соотношения
,
имеем
или
–
подведение функции
под
дифференциал.
Используя указанные равенства, получаем следующие свойства неопределенного интеграла.
Свойство 1.
,
т.е. производная
неопределенного интеграла (производная
каждой функции множества всех первообразных
)
равна подынтегральной функции.
Свойство 2.
,
т.е. дифференциал неопределенного интеграла (дифференциал каждой функции множества всех первообразных) равен подынтегральному выражению.
Иначе, знаки
дифференциала и интеграла взаимно
уничтожаются, если знак "
"
стоит перед знаком "
".
Свойство 3.
,
т.е. неопределенный интеграл от дифференциала какой-либо функции равен сумме этой функции и произвольного числа . Иначе, если знак " " стоит рядом и перед знаком " ", то эти знаки тоже взаимно уничтожаются, причем к функции прибавляется произвольное число .
Свойство 4.
–
аддитивность по
функции операции интегрирования, т.е.
неопределенный интеграл от суммы функций
равен сумме неопределенных интегралов
от этих функций (предполагается, что
все участвующие в равенстве интегралы
существуют). При этом, если
и
,
то записывают
,
объединяя
и
в
одну произвольную постоянную
.
Свойство 4 верно для суммы конечного множества слагаемых.
Свойство 5.
,
,
–
Однородность операции интегрирования, т.е. при вычислении неопределенного интеграла постоянный ненулевой множитель можно выносить за знак интеграла (соответственно можно вносить под знак интеграла).