Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ НА ВОПРОСЫ ПО ИНФЕ.doc
Скачиваний:
25
Добавлен:
23.09.2019
Размер:
2.02 Mб
Скачать

Различные формы остаточного члена

В форме Лагранжа:

В форме Коши:

В интегральной форме:

Вопрос 34.Минимизация погрешности интерполяции

В некоторых случаях удается улучшить результаты глобальной интерполяции за счет специального расположения узлов интерполяции (если они не зафиксированы). Доказано, что если функция   имеет непрерывную производную на отрезке  , то при выборе значений  , совпадающих с корнями полинома Чебышева степени n, интерполяционные полиномы  степени n-1 сходятся к значениям функции в любой точке этого отрезка. Корни многочлена Чебышева на отрезке   определяются выражением

,     .

Они расположены неравномерно на отрезке и сгущаются к его концам. Такое сгущение компенсирует увеличение погрешности интерполяции при приближении к концам отрезка, которое имеет место при равномерном расположении узлов.

Однако не всегда удается выбрать такое специальное расположение узлов, которое обеспечивает хорошую точность глобальной интерполяции. В тех случаях, когда узлы интерполяции фиксированы, уменьшение погрешности интерполяции осуществляют за счет уменьшения степени интерполяционных полиномов, применяя многоинтервальную интерполяцию.

Вопрос 35.Обобщенный подход к процессу интерполяции Интерполяция функций интерполяционными полиномами

В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например полученным в ходе некоторого эксперимента. Для вычисления многих функций оказывается эффективно приблизить их полиномами или дробно-рациональными функциями (см., например [1] Ссылка в списке литературы). Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений.

Все перечисленные выше вопросы рассмотрены в классических учебниках по численным методам (см., например, [2-5] Ссылки в списке литературы). Цель этого раздела - демонстрация возможностей MATLAB для изучения вопросов, возникающих при интерполяции функций, в основном при помощи интерполяционных полиномов. В данном разделе приводятся необходимые сведения об интерполяции функций и при помощи небольших программ, написанных на языке пакета MATLAB, изучаются проблемы, возникающие при интерполяции функций. Простота языка пакета MATLAB в сочетании с широким набором его функций, в том числе и графических, позволяет вместо написания собственных программ интерполяции и визуализации результатов сосредоточиться на исследовании большого числа примеров, что может быть использовано при проведении лабораторных работ по численным методам для студентов технических факультетов вузов и институтов.

Задача интерполяции функции, интерполяционные полиномы

Пусть на отрезке [a,b] задана функция ƒ(x). Задача интерполяции (или интерполирования) состоит в построении функции g(x), совпадающей с заданной ƒ(x) в некотором наборе точек {x1,x2,...,xn+1} из отрезка [a,b] (эти точки называются узлами интерполяции), т.е. должны выполняться условия:

g(xk)=yk, k=1,2,...,n+1,

где yk - известные значения функции ƒ(x) в точках xk. Функция g(x) называется интерполянтом функции ƒ(x).

Важно, что какие бы подходы для построения интерполяционного полинома не применялись, они всегда должны привести к одинаковому результату (если все вычисления проводятся точно, а не на компьютере), поскольку интерполяционный полином степени существует и единственный при различных -ом узлах интерполяции. Другое дело, что разные способы построения интерполяционного полинома могут обладать разными вычислительными свойствами. Рассмотрим сначала интерполяционный полином в форме Лагранжа. Далее мы будем использовать обозначение для интерполяционного полинома в зависимости от способа его построения.