Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по дискретке.doc
Скачиваний:
11
Добавлен:
20.09.2019
Размер:
1.11 Mб
Скачать

55. Группа с операцией сложения по модулю m - ????????????

56/ Группа с операцией умножения по модулю m - ????????????

57. Кольца.

В абстрактной алгебре кольцо́ — это один из наиболее часто встречающихся видов алгебраической структуры. Простейшими примерами колец являются алгебры чисел (целых, вещественных, комплексных, …), функций на множестве (всех, непрерывных, гладких, аналитических, …) и матриц. Во всех случаях имеется множество, похожее на множество чисел, в том смысле что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом. Однако есть и существенные отличия. Уже на примере целых чисел видно, что операция умножения может быть необратимой (операция деления определена не на целых числах, а на рациональных). Это различие ещё более существенно в кольцах функций и матриц: в них существуют элементы, произведение которых равно 0. Например, квадрат матрицы равен 0, так что она в принципе не может иметь обратную. Кроме того, умножение матриц не коммутативно. Алгебры Ли являются важными примерами колец, в которых умножение не ассоциативно и не имеет единицы (тождественного по умножению элемента). Понятие кольца формализует общие свойства всех указанных примеров, позволяя изучать их общими абстрактными методами.

Заметим, что, согласно алгебраической геометрии, любое коммутативное ассоциативное кольцо с единицей можно рассматривать как кольцо функций на некотором пространстве (аффинной схеме), однако соответствующая конструкция весьма нетривиальна, а её результат сложнее, чем может подсказывать элементарная интуиция. Хотя в целом интуитивное представление о кольце как о некотором кольце функций или кольце матриц не слишком сильно искажает истину, необходимо помнить о различиях.

Пусть  — кольцо, тогда выполнены следующие свойства:

, то есть 0 — поглощающий элемент по умножению.

, где  — элемент, обратный к по сложению.

примеры

 — тривиальное кольцо, состоящее из одного нуля. Это единственное кольцо, в котором ноль является мультипликативной единицей. Считать этот тривиальный пример кольцом важно с точки зрения теории категорий, так как при этом в категории колец возникает нулевой объект, через который пропускается любой нулевой гомоморфизм колец.

 — целые числа (с обычным сложением и умножением). Это важнейший пример кольца, так как любое кольцо можно рассматривать как алгебру над .

 — кольцо вычетов по модулю натурального числа n. Это классические примеры колец из теории чисел. Они являются полями тогда и только тогда, когда число простое. Соответствующие поля являются отправной точкой для построения теории конечных полей. Кольца вычетов также важны при исследовании структуры конечнопорождённых абелевых групп, Их также можно использовать для построения p-адических чисел.

 — кольцо рациональных чисел, являющееся полем. Это простейшее поле характеристики 0. Оно является основным объектом исследования в теории чисел. Пополнение его по всем неэквивалентным нормам даёт поля вещественных чисел и p-адических чисел , где  — произвольное простое число.