
- •Химическое оборудование, его классификация, особенности его эксплуатации.
- •Физические и теоретические основы процессов измельчения твердых тел.
- •Основные способы измельчения твердых тел (рис. 4):
- •Основные стадии дробления и измельчения.
- •Стадии дробления и измельчения
- •Теории измельчения.
- •Общая классификация дробилок.
- •Щековые дробилки.
- •Область применения.
- •Принцип действия и классификация:
- •Предохранительные устройства.
- •Маховики, шкив-маховики, привод
- •Особенности конструкции дробилок со сложным движением щеки – щдс.
- •Конструкционные материалы деталей и сборочных единиц щековых дробилок.
- •4. Производительность дробилки.
- •Область применения, принцип действия и классификация.
- •Рабочие органы конусной дробилки.
- •Различие дробилок по конструктивному признаку.
- •Рабочие органы конусной дробилки.
- •Различие дробилок по конструктивному признаку.
- •Основные расчеты конусных дробилок.
- •Расчет производительности конусных дробилок.
- •Расчет производительности ккд
- •Расчет предохранительных пружин опорного кольца в дробилках ксд и кмд.
- •Валковые дробилки. Область применения, принцип действия, основные типы.
- •Принцип действия валковых дробилок.
- •Материалы, используемые для изготовления валковых дробилок.
- •Основные расчеты валковых дробилок.
- •Определение диаметра валка d.
- •Определение производительности валковой дробилки.
- •Дробилки ударного действия.
- •Классификация барабанных измельчителей по различным критериям.
- •Измельчители раздавливающего и истирающего действия.
- •Ударные, вибрационные и струйные измельчители. Аэробильные мельницы.
- •Вибрационные мельницы.
- •«Машины для классификации сыпучих материалов. Основные способы классификации.»
- •Механические способы классификации.
- •Основные показатели процесса грохочения.
- •Основные типы грохотов.
- •Выбор схемы дробления с использованием грохочения.
- •Конструкции просеивающих элементов.
- •Закономерности процесса грохочения. Влияние диаметра зерен d и поперечного размера ячеек в свету на эффективность процесса грохочения.
- •Последовательность выделения классов при грохочении.
- •Конструкции плоских качающихся и инерционных (вибрационных) грохотов.
- •Плоский качающийся грохот.
- •Список литературы
- •Оценка скорости процессов фильтрования.
- •Определение общей продолжительности рабочего цикла фильтров периодического действия.
- •Классификация фильтров.
- •Конструкции фильтров. Фильтр-прессы рамные и камерные.
- •Фильтр-пресс автоматизированный камерный типа фпакм.
- •Листовые фильтры, работающие под давлением.
- •Ячейковые барабанные вакуум-фильтры.
- •Конструкция барабанного вакуум-фильтра с наружной фильтрующей поверхностью.
- •Конструкция дискового вакуум-фильтра.
- •Ленточные вакуум-фильтры.
- •Вакуум-фильтры карусельные. Принцип действия. Область применения.
- •Конструкция ковша.
- •Ленточные фильтрпрессы.
- •Сепараторы, трубчатые центрифуги. Основные положения теории центрифугирования.
- •Фактор разделения.
- •Классификация центрифуг.
- •Рабочий цикл центрифуг периодического действия.
- •Конструкции центрифуг периодического действия. Вертикальные малолитражные центрифуги с нижним приводом.
- •Маятниковые центрифуги.
- •Подвесные центрифуги.
- •Центрифуги непрерывного действия.
- •Фильтрующие центрифуги непрерывного действия со шнековой выгрузкой осадка типа фвш и фгш.
- •Горизонтальные осадительные центрифуги непрерывного действия со шнековой выгрузкой осадка, тип огш.
- •Жидкостные центробежные сепараторы, трубчатые центрифуги. Область применения сепараторов и трубчатых центрифуг.
- •Условные обозначения жидкостных центробежных сепараторов.
- •Конструктивные схемы жидкостных центробежных сепараторов различных типов и их приводов.
- •Саморазгружающиеся тарельчатые сепараторы непрерывного действия.
- •Трубчатые центрифуги (сверхцентрифуги).
- •Трубчатые центрифуги (сверхцентрифуги).
Вибрационные мельницы.
В вибрационных измельчителях реализуется ударно-истирающий способ измельчения. На рис. 94 показаны различные типы вибрационных мельниц. Мельница с центральным расположением вибратора (рис. 94 поз. а) состоит из цилиндрического корпуса 1 с загрузочно-разгрузочным устройством 8, вибратора 2, пружинных или резиновых опор 3, опорной рамы 4. электродвигателя 5, эластичной муфты 6, соединяющей вал двигателя с валом вибратора, и шаров 7. Вибратор, показанный на рис. 96, предназначен для работы при 1500 [об/мин], стоит из вала с дебалансом 11, установленного на двух подшипниках, заделанных в трубе 4.С помощью клиновидных колец 8 вибратор укрепляется в корпусе измельчителя. При вращении дебалансного вала корпус измельчителя вибрирует, передавая колебания шарам. За счет соударения вибрирующих шаров, а также их взаимного перемещения происходит интенсивное измельчение поступающего в корпус материала.
Рис.. Основные типы вибрационных мельниц: а – инерционный; б – гирационный; 1 – корпус; 2 – вибратор; 3 – опоры; 4 – рама; 5 – электродвигатель; 6 – муфта; 7 – мелющие тела (шары); 8 – люк.
Струйные измельчители.
Струйные измельчители (мельницы) применяют для измельчения материалов средней твердости с получением частиц размерами до 2—5 мкм. Измельчение происходит вследствие соударения частиц между собой, а также их ударов и истирания о стенки камеры. Действие струйных измельчителей основано на использовании энергии сжатого газа или пара, которые при расширении в соплах приобретают большую скорость, в ряде случаев достигающую нескольких сотен метров в секунду. Введенные в струю частицы измельчаемого материала разрушаются вследствие взаимных соударений при пересечении потоков струй или при ударе о твердую перегородку.
Струйные мельницы позволяют резко снизить загрязнение измельчаемого материала продуктами износа. По виду энергоносителя различают воздухо-, газо- и пароструйные мельницы, в которых энергоносителем является сжатый, соответственно, воздух, инертный газ или перегретый пар. Удельный расход энергоносителя на 1 кг материала в среднем для сжатого воздуха 3—5 м3, пара 1—3 кг при давлении 0,4—0,8 Мпа.
По конструкции помольной камеры струйные мельницы делят на три группы: с противоточной камерой — для тонкого измельчения материалов, с плоской и трубчатой камерой — для сверхтонкого (коллоидного) измельчения.
Рис.. Противоточная двухструйная мельница с верхним выводом помола: 1 – камера измельчения; 2 – разгонные трубки; 3 – сопла; 4 – рукава питания и возврата крупной фракции из сепаратора; 5 – выводная труба; 6 – сепаратор; 7 – штуцер для отвода тонкой фракции; 8 – шнек питатия.
Измельчитель с противоточной двухструйной камерой (рис.98) состоит из помольной камеры 1, футерованной износостойким материалом, в которую с противоположных сторон входят разгонные трубки 2 с размещенными в них соплами 3 для подачи энергоносителя. В разгонные трубки по рукавам 4 подается измельчаемый материал. Он увлекается потоком газа или пара; в камере 1 происходит соударение частиц. Измельченный материал через трубу 5 попадает в сепаратор 6, где происходит отделение крупной фракции: последняя возвращается на повторное измельчение, Мелкая фракция через штуцер 7 направляется на последующую обработку. Питатель 5 служит для подачи исходного материала.