
- •Химическое оборудование, его классификация, особенности его эксплуатации.
- •Физические и теоретические основы процессов измельчения твердых тел.
- •Основные способы измельчения твердых тел (рис. 4):
- •Основные стадии дробления и измельчения.
- •Стадии дробления и измельчения
- •Теории измельчения.
- •Общая классификация дробилок.
- •Щековые дробилки.
- •Область применения.
- •Принцип действия и классификация:
- •Предохранительные устройства.
- •Маховики, шкив-маховики, привод
- •Особенности конструкции дробилок со сложным движением щеки – щдс.
- •Конструкционные материалы деталей и сборочных единиц щековых дробилок.
- •4. Производительность дробилки.
- •Область применения, принцип действия и классификация.
- •Рабочие органы конусной дробилки.
- •Различие дробилок по конструктивному признаку.
- •Рабочие органы конусной дробилки.
- •Различие дробилок по конструктивному признаку.
- •Основные расчеты конусных дробилок.
- •Расчет производительности конусных дробилок.
- •Расчет производительности ккд
- •Расчет предохранительных пружин опорного кольца в дробилках ксд и кмд.
- •Валковые дробилки. Область применения, принцип действия, основные типы.
- •Принцип действия валковых дробилок.
- •Материалы, используемые для изготовления валковых дробилок.
- •Основные расчеты валковых дробилок.
- •Определение диаметра валка d.
- •Определение производительности валковой дробилки.
- •Дробилки ударного действия.
- •Классификация барабанных измельчителей по различным критериям.
- •Измельчители раздавливающего и истирающего действия.
- •Ударные, вибрационные и струйные измельчители. Аэробильные мельницы.
- •Вибрационные мельницы.
- •«Машины для классификации сыпучих материалов. Основные способы классификации.»
- •Механические способы классификации.
- •Основные показатели процесса грохочения.
- •Основные типы грохотов.
- •Выбор схемы дробления с использованием грохочения.
- •Конструкции просеивающих элементов.
- •Закономерности процесса грохочения. Влияние диаметра зерен d и поперечного размера ячеек в свету на эффективность процесса грохочения.
- •Последовательность выделения классов при грохочении.
- •Конструкции плоских качающихся и инерционных (вибрационных) грохотов.
- •Плоский качающийся грохот.
- •Список литературы
- •Оценка скорости процессов фильтрования.
- •Определение общей продолжительности рабочего цикла фильтров периодического действия.
- •Классификация фильтров.
- •Конструкции фильтров. Фильтр-прессы рамные и камерные.
- •Фильтр-пресс автоматизированный камерный типа фпакм.
- •Листовые фильтры, работающие под давлением.
- •Ячейковые барабанные вакуум-фильтры.
- •Конструкция барабанного вакуум-фильтра с наружной фильтрующей поверхностью.
- •Конструкция дискового вакуум-фильтра.
- •Ленточные вакуум-фильтры.
- •Вакуум-фильтры карусельные. Принцип действия. Область применения.
- •Конструкция ковша.
- •Ленточные фильтрпрессы.
- •Сепараторы, трубчатые центрифуги. Основные положения теории центрифугирования.
- •Фактор разделения.
- •Классификация центрифуг.
- •Рабочий цикл центрифуг периодического действия.
- •Конструкции центрифуг периодического действия. Вертикальные малолитражные центрифуги с нижним приводом.
- •Маятниковые центрифуги.
- •Подвесные центрифуги.
- •Центрифуги непрерывного действия.
- •Фильтрующие центрифуги непрерывного действия со шнековой выгрузкой осадка типа фвш и фгш.
- •Горизонтальные осадительные центрифуги непрерывного действия со шнековой выгрузкой осадка, тип огш.
- •Жидкостные центробежные сепараторы, трубчатые центрифуги. Область применения сепараторов и трубчатых центрифуг.
- •Условные обозначения жидкостных центробежных сепараторов.
- •Конструктивные схемы жидкостных центробежных сепараторов различных типов и их приводов.
- •Саморазгружающиеся тарельчатые сепараторы непрерывного действия.
- •Трубчатые центрифуги (сверхцентрифуги).
- •Трубчатые центрифуги (сверхцентрифуги).
Измельчители раздавливающего и истирающего действия.
Область применения, принцип действия.
К машинам рассматриваемого типа относятся бегуны, роликовые, шарокольцевые, роликомаятниковые и бисерные измельчители. Их применяют преимущественно для среднего помола материалов средней и малой прочности и мягких; исключение составляют лишь бисерные измельчители (мельницы), в которых возможен сверхтонкий помол. Измельчение материала происходит при одновременном воздействии раздавливания и истирания.
Конструктивные схемы измельчителей раздавливающего и истирающего действия представлены на рис. 79.
Рис.79. Схемы измельчителей раздавливающего и истирающего действия:
а) – бегуны:
1,2 - катки;
б) – роликовый (валковый) измельчитель:
3 - ролики;
в) – шарокольцевой измельчитель:
4 - шары;
г) – роликомаятниковый измельчитель:
5 - ролики;
д) – бисерный измельчитель:
6 – ротор с дисками,
7 – рубашка с охл. агентом,
8 - сито.
Бегуны рис. поз.“а” применяют как для мелкого дробления, так и для помола; в них можно подвергать материал не только измельчению, но и перемешиванию, пропитке и растиранию. Рабочими органами являются массивные катки 1, 2, перемещающиеся в чаше с измельчаемым материалом. Роликовые, шарокольцевые и роликовомаятниковые измельчители (соответственно рис, б, в и г) относятся к среднеходовым измельчителям; частота вращения рабочих органов в среднем 25-120 об/мин, окружная скорость 3-10 м/с. Рабочие органы этих машин – ролики 3, 5, шары 4. Нагрузка создается пружинами или центробежными силами.
Увеличение скорости и частоты приложения разрушающих нагрузок интенсифицирует процесс помола материала благодаря усталостным явлениям. Эти измельчители имеют пониженные по сравнению с барабанными мельницами энергозатраты (например, при помоле угля энергозатраты составляют 6-9 кВт∙ч/т), меньший (примерно на порядок) износ рабочих органов, более компактны. Бегуны применяют для мокрого и сухого измельчения.
В среднеходовых измельчителях рис: роликовых (валковых) – поз.“б”; шарокольцевых – поз.“в”; роликомаятниковых – поз.“г” – обычно осуществляют сухой помол с пневматической разгрузкой измельченного продукта, аналогичной применяемой в шаровых барабанных мельницах сухого помола.
В бисерных измельчителях (рис. поз. “д”), широко применяемых в лакокрасочной промешленности, реализуется мокрый помол. Частицы суспензии пигмента измельчаются кремнекварцевым бисером (размер зерен 1-2 мм), заполняющим 2/3 объема камеры и приводимым в движение вращающимся ротором 6 с дисками. Помольная камера имеет рубашку 7 для подачи криоагента. Частицы суспензии необходимой тонины помола (0,5-5 мкм) отводятся через сито 8. отношение высоты помольной камеры к диаметру 4:1, диски, изготовленные из износостойкой стали, имеют окружную скорость 9-11м/с; энергозатраты до 40-50 кВт∙ч на 1 т продукта.
Ударные, вибрационные и струйные измельчители. Аэробильные мельницы.
На рис. 91 изображен агрегат молоткового измельчителя – аэробильная мельница. Вентилятор и ротор измельчителя установлены на одном валу 6. Ротор представляет собой диск 1 с жестко прикрепленными к нему билами 2. В торцовых стенках корпуса 3 находятся штуцера 5 и 4 для подачи сырья и вывода измельченного материала, а в нижней части – штуцер 7 для сбора и вывода предметов, на поддающихся измельчению.
Подлежащий измельчению материал через штуцер 5 подается питателем Б в измельчитель, где и измельчается быстровращающимися билами. Воздушным потоком, который создается вращающимся ротором и вентилятором, измельченный материал выносится через штуцер 4 в сепаратор Г. Крупная фракция материала, отделенная в сепараторе, через питатель снова возвращается в измельчитель на доизмельчение, а целевой продукт вместе с воздухом направляется на дальнейшую обработку.
Рис. . Агрегат с аэробильной мельницей.
А – мельница; Б – питатель; В – вентилятор; Г – сепаратор; Д – воздуховод; 1 – диск ротора; 2 – била; 3 – корпус; 4 – выводной штуцер; 5 – штуцер питания; 6 – вал; 7 – штуцер отходов.
На рис. 91 изображен агрегат молоткового измельчителя – аэробильная мельница. Вентилятор и ротор измельчителя установлены на одном валу 6. Ротор представляет собой диск 1 с жестко прикрепленными к нему билами 2. В торцовых стенках корпуса 3 находятся штуцера 5 и 4 для подачи сырья и вывода измельченного материала, а в нижней части – штуцер 7 для сбора и вывода предметов, на поддающихся измельчению.
Подлежащий измельчению материал через штуцер 5 подается питателем Б в измельчитель, где и измельчается быстровращающимися билами. Воздушным потоком, который создается вращающимся ротором и вентилятором, измельченный материал выносится через штуцер 4 в сепаратор Г. Крупная фракция материала, отделенная в сепараторе, через питатель снова возвращается в измельчитель на доизмельчение, а целевой продукт вместе с воздухом направляется на дальнейшую обработку.
Посадка на один вал ротора и вентилятора осуществляется только в малогабаритных измельчителях. В измельчителях больших размеров с несколькими рядами бил на валу не устанавливают ветилятор. Последний, как это показано на рис. 93, отделен от измельчителя и установлен за сепаратором.
Рис. . Агрегат с аэробильной мельницей и вынесенным вентилятором: 1 – аэромобильная мельница; 2 – сепаратор; 3 – стояк; 4 – циклон; 5, 7 – газоходы; 6 – вентилятор; 8 – воронка питания