
- •Министерство образования Российской Федерации
- •Содержание
- •1.2 Скорость роста функций
- •1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- •1.4 Типы данных, структуры данных и абстрактные типы данных
- •1.5 Динамические множества
- •2 Алгоритмы сортировок
- •2.1 Понятие внутренней и внешней сортировки
- •2.2 Сортировка вставками
- •2.3 Сортировка слиянием
- •2.3.1 Описание алгоритма
- •2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- •2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- •2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- •2.4 Пирамидальная сортировка
- •2.4.1 Введение в алгоритм
- •2.4.2 Сохранение основного свойства кучи
- •2.4.3 Построение кучи
- •2.5 Быстрая сортировка
- •2.5.1 Введение в алгоритм
- •2.5.2 Описание
- •2.5.3 Разбиение массива
- •2.5.4 Особенности работы быстрой сортировки
- •2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- •2.6.1 Введение
- •2.6.2 Разрешающее дерево сортировки сравнениями
- •2.7 Цифровая сортировка
- •2.8 Сортировка вычерпыванием
- •2.8.1 Описание алгоритма
- •2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- •2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- •2.9 Сортировка подсчетом
- •2.9.1 Описание алгоритма
- •2.9.2 Анализ времени работы
- •3 Элементарные и нелинейные структуры данных
- •3.1 Элементарные структуры: список, стек, очередь, дек
- •3.1.1 Список Линейный однонаправленный список
- •Линейный двунаправленный список
- •Двунаправленный список с фиктивными элементами
- •Циклические списки
- •Циклический однонаправленный список
- •Циклический двунаправленный список
- •3.1.2 Стек
- •3.1.3 Очередь
- •3.1.3 Дек
- •3.2 Нелинейные структуры данных
- •3.2.1 Представление корневых деревьев в эвм
- •Обходы деревьев
- •3.2.2 Двоичные деревья Спецификация двоичных деревьев
- •Реализация
- •Обходы двоичных деревьев
- •3.2.3 Двоичные деревья поиска Основные операции
- •Минимум и максимум
- •Следующий и предыдущий элементы
- •Добавление и удаление
- •Случайные деревья поиска
- •Оптимальные деревья поиска
- •4 Хеширование
- •4.1 Введение
- •4.2 Прямая адресация; таблицы с прямой адресацией
- •4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- •Разрешение коллизий с помощью цепочек
- •Анализ хеширования с цепочками
- •4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- •Ключи как натуральные числа
- •Деление с остатком
- •Умножение
- •Универсальное хеширование
- •4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- •Линейная последовательность проб
- •1 / (1 – )
- •5 Основные принципы разработки алгоритмов
- •5.1 Введение в теорию графов
- •5.1.1 Графы
- •5.1.2 Представление графов
- •5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- •5.2.1 Поиск в ширину (волновой алгоритм)
- •5.2.2 Анализ поиска в ширину
- •5.2.3 Деревья поиска в ширину
- •5.2.4 Поиск в глубину
- •5.2.5 Анализ поиска в глубину
- •5.2.6 Свойства поиска в глубину
- •5.2.7 Классификация рёбер
- •5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- •5.3.1 Топологическая сортировка
- •5.3.2 Сильно связные компоненты
- •5.4 Алгоритм построения минимального остовного дерева
- •5.4.1 Остовные деревья минимальной стоимости
- •5.4.2 Построение минимального покрывающего дерева
- •5.4.3 Алгоритмы Крускала и Пpимa
- •5.4.4 Алгоритм Крускала
- •5.4.5 Алгоритм Прима
- •5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- •5.5.1 Нахождение кратчайшего пути
- •5.5.2 Алгоритм Дейкстры
- •5.5.3 Алгоритм Флойда
- •5.6 Поиск с возвратом
- •5.6.1 Введение
- •5.6.2 Переборные алгоритмы
- •5.6.3 Метод ветвей и границ
- •5.6.4 Метод альфа-бета отсечения
- •5.6.5 Локальные и глобальные оптимальные решения
- •5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- •5.7.1 «Ханойские башни»
- •5.8 Жадные алгоритмы и динамическое программирование
- •5.8.1 Задача о выборе заявок
- •5.8.2 Дискретная задача о рюкзаке
- •5.8.3 Непрерывная задача о рюкзаке
- •5.8.4 Числа Фибоначчи
- •5.8.5 Задача триангуляции многоугольника
- •5.8.6 Дп, жадный алгоритм или что-то другое?
5.7 Метод декомпозиции ( «Разделяй и властвуй»)
Этот метод, называемый также методом «разделяй и властвуй» или методом разбиения, возможно, является самым важным и наиболее широко применимым методом проектирования эффективных алгоритмов. Он предполагает такую декомпозицию (разбиение) задачи размера n на более мелкие задачи, что на основе решений этих более мелких задач можно легко получить решение исходной задачи. В качестве примеров применений этого метода можно назвать сортировку слиянием или применение деревьев двоичного поиска, которые рассматриваются дальше. Иногда в литературе алгоритмами с возвратом (backtracking algo- rithms) называют все алгоритмы полного перебора вглубь, а класс более интеллектуальных, уменьшающих рост дерева поиска, выде- ляют в подкласс алгоритмов вет- вей и границ (branch and bound algorithms). При использовании метода декомпозиции обычно применяется следующая последовательность действий:
Декомпозиция: разделяем задачу на k задач, меньших по раз- меру (размером приблизительно 1 / k от исходной);
«Властвование»: процесс деле- ния продолжаем рекурсивно до тех пор, пока полученные подза- дачи не будут достаточно мало- го размера для их тривиального решения. Далее решаем полу- чившиеся задачи.
Соединение: комбинируем решения подзадач в одно решение.
Важное условие: подзадачи, полу- чившиеся в процессе разбиения, не должны повторяться или частич- но перекрывать друг друга. Если условие не выполняется, то прин- цип «разделяй и властвуй» к таким задачам явно неприменим, и целе- сообразнее использовать другие методы.
5.7.1 «Ханойские башни»
Чтобы проиллюстрировать практическое применение принципа «разделяй и властвуй» рассмотрим хорошо известную головоломку «Ханойские башни». Имеются три стержня A, B и C. Вначале на стержень A нанизаны несколько дисков: диск наибольшего диаметра находится внизу, а выше – диски последовательно уменьшающегося диаметра. Цель головоломки – перемещать диски (по одному) со стержня на стержень так, чтобы диск большего диаметра никогда не размещался выше диска меньшего диаметра, и чтобы, в конце концов, все диски оказались нанизанными на стержень B. Стержень C можно использовать для временного хранения дисков.
Рисунок 5.16 – Головоломка «Ханойские башни»
Задачу перемещения n наименьших дисков со стержня A на стержень B можно представить себе состоящей из двух подзадач размера n-1. Сначала нужно переместить n-1 наименьших дисков со стержня A на стержень C, оставив на стержне A n-й наибольший диск. Затем этот диск нужно переместить с A на B. Потом следует переместить n-1 дисков со стержня C на стержень B. Это перемещение n 1 дисков выполняется путем рекурсивного применения указанного метода. Поскольку диски, участвующие в перемещениях, по размеру меньше тех, которые в перемещении не участвуют, не нужно задумываться над тем, что находится под перемещаемыми дисками на стержнях A, B или C. Хотя фактическое перемещение отдельных дисков не столь очевидно, а моделирование вручную выполнить непросто из-за образования стеков рекурсивных вызовов, с концептуальной точки зрения этот алгоритм все же довольно прост для понимания и доказательства его правильности (а если говорить о быстроте разработки, то ему вообще нет равных). Именно легкость разработки алгоритмов по методу декомпозиции обусловила огромную популярность этого метода; к тому же, во многих случаях эти алгоритмы оказываются более эффективными, чем алгоритмы, разработанные традиционными методами.
var N: integer;
procedure MoveDisks(k: integer; X, Y, Z: char);
begin
if k=0 then exit; (выход из рекурсии) MoveDisks(k-1, X, Z, Y); (подзадача 1)
writeln(X,' -> ',Y); (подзадача 2) МоvеDisks(k-1, Z, Y, X);(подзадача 3)
end;
begin
read(N);
MoveDisks(N, 'А', 'В', 'С');
end.
Листинг 5.19 – Алгоритм решения задачи «Ханойские башни»
procedure Try(next_element); begin
<включить next_element в искомое множество>;
if <достигнут нужный результат> then begin
<запомнить этот результат> и/или
<вывести его на печать> и/или <проверить на оптимальность>;
<выйти из процедуры, возможно исключив next element
из этого множества>;
end;
<цикл перебора всех оставшихся или допустимых элементов rest_element, который не обязательно должен быть реализован в виде цикла for, while или repeat> begin (в цикле)
<подсчет необходим локальных величин (*), если надо>; if <условие обрезания дерева
перебора, которого может и не быть>
then Try(rest element);
<обратные действия к (*), если (*} имели место>;
еnd;
<исключить пехt_е1еment из искомого множества»
end;
Листинг 5.20 – Обобщенный алгоритм решения задачи методом перебора