
- •Министерство образования Российской Федерации
- •Содержание
- •1.2 Скорость роста функций
- •1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- •1.4 Типы данных, структуры данных и абстрактные типы данных
- •1.5 Динамические множества
- •2 Алгоритмы сортировок
- •2.1 Понятие внутренней и внешней сортировки
- •2.2 Сортировка вставками
- •2.3 Сортировка слиянием
- •2.3.1 Описание алгоритма
- •2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- •2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- •2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- •2.4 Пирамидальная сортировка
- •2.4.1 Введение в алгоритм
- •2.4.2 Сохранение основного свойства кучи
- •2.4.3 Построение кучи
- •2.5 Быстрая сортировка
- •2.5.1 Введение в алгоритм
- •2.5.2 Описание
- •2.5.3 Разбиение массива
- •2.5.4 Особенности работы быстрой сортировки
- •2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- •2.6.1 Введение
- •2.6.2 Разрешающее дерево сортировки сравнениями
- •2.7 Цифровая сортировка
- •2.8 Сортировка вычерпыванием
- •2.8.1 Описание алгоритма
- •2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- •2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- •2.9 Сортировка подсчетом
- •2.9.1 Описание алгоритма
- •2.9.2 Анализ времени работы
- •3 Элементарные и нелинейные структуры данных
- •3.1 Элементарные структуры: список, стек, очередь, дек
- •3.1.1 Список Линейный однонаправленный список
- •Линейный двунаправленный список
- •Двунаправленный список с фиктивными элементами
- •Циклические списки
- •Циклический однонаправленный список
- •Циклический двунаправленный список
- •3.1.2 Стек
- •3.1.3 Очередь
- •3.1.3 Дек
- •3.2 Нелинейные структуры данных
- •3.2.1 Представление корневых деревьев в эвм
- •Обходы деревьев
- •3.2.2 Двоичные деревья Спецификация двоичных деревьев
- •Реализация
- •Обходы двоичных деревьев
- •3.2.3 Двоичные деревья поиска Основные операции
- •Минимум и максимум
- •Следующий и предыдущий элементы
- •Добавление и удаление
- •Случайные деревья поиска
- •Оптимальные деревья поиска
- •4 Хеширование
- •4.1 Введение
- •4.2 Прямая адресация; таблицы с прямой адресацией
- •4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- •Разрешение коллизий с помощью цепочек
- •Анализ хеширования с цепочками
- •4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- •Ключи как натуральные числа
- •Деление с остатком
- •Умножение
- •Универсальное хеширование
- •4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- •Линейная последовательность проб
- •1 / (1 – )
- •5 Основные принципы разработки алгоритмов
- •5.1 Введение в теорию графов
- •5.1.1 Графы
- •5.1.2 Представление графов
- •5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- •5.2.1 Поиск в ширину (волновой алгоритм)
- •5.2.2 Анализ поиска в ширину
- •5.2.3 Деревья поиска в ширину
- •5.2.4 Поиск в глубину
- •5.2.5 Анализ поиска в глубину
- •5.2.6 Свойства поиска в глубину
- •5.2.7 Классификация рёбер
- •5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- •5.3.1 Топологическая сортировка
- •5.3.2 Сильно связные компоненты
- •5.4 Алгоритм построения минимального остовного дерева
- •5.4.1 Остовные деревья минимальной стоимости
- •5.4.2 Построение минимального покрывающего дерева
- •5.4.3 Алгоритмы Крускала и Пpимa
- •5.4.4 Алгоритм Крускала
- •5.4.5 Алгоритм Прима
- •5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- •5.5.1 Нахождение кратчайшего пути
- •5.5.2 Алгоритм Дейкстры
- •5.5.3 Алгоритм Флойда
- •5.6 Поиск с возвратом
- •5.6.1 Введение
- •5.6.2 Переборные алгоритмы
- •5.6.3 Метод ветвей и границ
- •5.6.4 Метод альфа-бета отсечения
- •5.6.5 Локальные и глобальные оптимальные решения
- •5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- •5.7.1 «Ханойские башни»
- •5.8 Жадные алгоритмы и динамическое программирование
- •5.8.1 Задача о выборе заявок
- •5.8.2 Дискретная задача о рюкзаке
- •5.8.3 Непрерывная задача о рюкзаке
- •5.8.4 Числа Фибоначчи
- •5.8.5 Задача триангуляции многоугольника
- •5.8.6 Дп, жадный алгоритм или что-то другое?
3.1.3 Дек
Дек – это структура данных, представляющая собой последовательность элементов, в которой можно добавлять и удалять в произвольном порядке элементы с двух сторон. Первый и последний элементы дека соответствуют входу и выходу дека.
Выделяют ограниченные деки:
дек с ограниченным входом – из конца дека можно только извлекать элементы;
дек с ограниченным выходом – в конец дека можно только добавлять элементы.
Данная структура является наиболее универсальной из рассмотренных выше линейных структур. Накладывая дополнительные ограничения на операции с началом и/или концом дека, можно осуществлять моделирование стека и очереди.
Дек также можно реализовывать как статическую структуру данных в виде одномерного массива, а можно как динамическую структуру – в виде линейного списка.
Поскольку в деке, как и в очереди, осуществляется работа с обоими концами структуры, то целесообразно использовать те же подходы к организации дека, что применялись и для очереди.
Рисунок 3.8 – Дек и его организация
Описание элементов дека аналогично описанию элементов линейного двунаправленного списка, где DataType является типом элементов дека. Дополнительно введем два указателя на начало и конец дека:
var
ptrBeginDeck,
ptrEndDeck: PElement;
Основные операции, производимые с деком:
добавить элемент в начало;
добавить элемент в конец;
извлечь элемент из начала;
извлечь элемент из конца;
очистить дек;
проверка пустоты дека.
Реализацию этих операций приведем в виде соответствующих процедур, которые, в свою очередь, используют процедуры операций с линейным двунаправленным списком.
procedure InBeginDeck(NewElem: TypeData;
var ptrBeginDeck: PElement);
{Добавление элемента в начало дека}
begin
InsFirst_LineDoubleList(NewElem, ptrBeginDeck);
end;
procedure InEndDeck(NewElem: TypeData;
var ptrBeginDeck, ptrEndDeck: PElement);
{Добавление элемента в конец дека}
begin
Ins_LineDoubleList(NewElem, ptrBeginDeck, ptrEndDeck);
end;
procedure FromBeginDeck(NewElem: TypeData;
var ptrBeginDeck: PElement);
{Извлечение элемента из начала дека}
begin
if ptrBeginDeck <> nil then begin
NewElem := ptrBeginDeck^.Data;
Del_LineDoubleList(ptrBeginDeck, ptrBeginDeck); {удал-м 1-ый}
end;
end;
procedure FromEndDeck(NewElem: TypeData,
var ptrBeginDeck, ptrEndDeck: PElement);
{Извлечение элемента из конца дека}
begin
if ptrBeginDeck <> nil then begin
NewElem := ptrEndDeck^.Data;
Del_LineDoubleList(ptrBeginDeck, ptrEndDeck); {удаляем конец}
end;
end;
procedure ClearDeck(var ptrBeginDeck: PElement);
{Очистка дека}
begin
while ptrBeginDeck <> nil do
Del_LineDoubleList(ptrBeginDeck, ptrBeginDeck);
ptrEndDeck := nil;
end;
function EmptyDeck(var ptrBeginDeck: PElement): boolean;
{Проверка пустоты дека}
begin
if ptrBeginDeck = nil then EmptyDeck := true
else EmptyDeck := false;
end;
Листинг 3.20 – Реализация дека на базе линейного двунаправленного списка