
- •Лекции по дисциплине «электротехника и электроника»
- •Глава 1 основные понятия и определения электрических цепей
- •Электрическая цепь и её элементы
- •Активные элементы
- •1.4 Пассивные элементы
- •1.5 Основные законы и уравнения электрических цепей
- •Глава 2. Основные свойства и методы расчета электрических цепей постоянного тока
- •2.1 Метод контурных токов
- •2.2 Принцип наложения и метод наложения
- •2.6 Метод узловых потенциалов
- •2.7 Метод эквивалентного генератора
- •2.8 Передача энергии от активного двухполюсника нагрузке
- •2.9 Преобразования в линейных электрических цепях
- •Глава 3 линейные цепи синусоидального тока
- •3.1 Синусоидальный ток и его основные характеристики
- •3.2 Получение синусоидальной эдс
- •3.3 Способы изображения синусоидальных величин
- •3.4 Законы Ома и Кирхгофа в комплексной форме
- •3.5 Пассивные элементы r, l, c в цепи синусоидального тока
- •3.6 Последовательное соединение элементов r, l, c в цепи синусоидального напряжения
- •3.7 Мгновенная и средняя мощности. Активная, реактивная и полная мощности. Измерение мощности ваттметром
- •3.8 Треугольники сопротивлений, напряжений и мощностей
- •3.9 Топографическая и векторная диаграммы
- •3.10 Резонанс напряжений
- •3.11 Резонанс токов
- •3.12 Частотные характеристики пассивных двухполюсников
- •3.13 Условие передачи максимальной мощности от активного двухполюсника нагрузке
- •3.14 Падение и потеря напряжения в линии передачи электроэнергии
- •Глава 4 цепи со взаимной индуктивностью
- •4.1 Индуктивно связанные элементы. Эдс взаимной индукции
- •Последовательное соединение индуктивно связанных элементов цепи
- •Параллельное соединение индуктивно связанных элементов цепи
- •4.4 Эквивалентная замена индуктивно связанных цепей
- •4 .5 Трансформатор. Вносимое сопротивление. Векторная диаграмма
- •Глава 5 расчёт трёхфазных электрических цепей
- •5.1. Основные понятия и определения
- •5.2 Основные схемы соединения трёхфазных цепей
- •5.3 Методы расчета трёхфазных цепей
- •5.3.1 Соединение звездой
- •5.3.2 Соединение треугольником
- •5.4 Измерение мощности в трёхфазных цепях
- •5.4 Аварийные режимы
- •5.5 Вращающееся магнитное поле
- •Глава 6 линейные цепи с несинусодальными источниками
- •6.1 Основные понятия и определения
- •6.2 Особенности расчета линейной электрической цепи с несинусоидальными источниками
- •6.3 Мощность при несинусоидальных источниках
- •6.4 Высшие гармоники в трёхфазных цепях
- •Глава 7 четырёхполюсники
- •7.1 Определение четырёхполюсника. Основные формы записи уравнений четырёхполюсника
- •7.2 Определение коэффициентов четырёхполюсника
- •7.2 Определение коэффициентов y, z, h, g и в форм уравнений через коэффициенты формы а
- •Эквивалентные схемы четырёхполюсника
- •7.4 Соединение четырехполюсников
- •8 Переходные процессы в линейных электрических цепях
- •8.1 Общие вопросы теории переходных процессов
- •4.2. Классический метод расчёта переходных процессов
- •4.2.1. Определение принужденной составляющей
- •4.2.2. Определение порядка цепи n
- •4.2.3. Определение корней характеристического уравнения
- •8.2.4. Определение постоянных интегрирования
- •8.2.5 Переходные процессы в цепях первого порядка
- •8.2.5.1 Разряд заряженной ёмкости через сопротивление r
- •8.2.5.2 Подключение r -цепи к источнику постоянного напряжения
- •4.2.5.3 Подключение rl-цепи к источнику постоянного напряжения
- •8.2.5.4 Подключение rc-цепи к источнику гармонического напряжения
- •8.2.6 Переходные процессы в цепях второго порядка
- •8.2.6.1 Разряд емкости на цепь rl
- •8.2.6.2 Апериодический разряд емкости на цепь rl
- •8.2.5.3 Колебательный заряд конденсатора
- •8.2.5.4 Общий случай расчета цепи второго порядка
- •8.3 Операторный метод расчета переходных процессов в линейных электрических цепях
- •8.3.1 Преобразование Лапласа. Основные теоремы операторного метода
- •Теоремы операторного метода
- •Ключевые теоремы
- •Некоторые типовые преобразования Лапласа
- •8.3.2 Законы Ома и Кирхгофа в операторной форме
- •8.3.3 Эквивалентные операторные схемы
- •8.3.4 Порядок расчета переходных процессов операторным методом
- •8.3.6 Расчет свободных составляющих операторным методом
8.2.4. Определение постоянных интегрирования
Как известно, постоянные интегрирования определяются из начальных условий, каковыми являются значения искомой функции и ее производных по (n – 1)-ую включительно в начальный момент времени 0+ («справа»). В отличие от чисто математических задач, где эти условия задаются в качестве исходных данных непосредственно, при анализе переходных процессов задаются начальные условия «слева» в момент t = 0–, предшествующий коммутации (чаще всего они формулируются самой постановкой задачи и легко определяются из расчета докоммутационного режима). Нахождение начальных условий «справа» по известным значениям начальных условий «слева» – ключевой момент в расчете переходных процессов.
Опишем процедуру отыскания начальных условий в цепи n-го порядка
для послекоммутационной схемы (
) составляют систему уравнений для мгновенных значений токов и напряжений по законам Кирхгофа, дополняют эту систему компонентными уравнениями типа
для емкости;
рассматривают эту систему уравнений в момент t = 0+ с учетом независимых начальных условий, которые по правилам коммутации берутся равными начальным условиям «слева», в результате определяются зависимые начальные условия, в том числе значения первых производных от индуктивных токов и емкостных напряжений;
для отыскания значений первых производных от зависимых электрических величин и вторых производных от независимых электрических величин необходимо систему уравнений из п. 1 продифференцировать и рассмотреть ее в момент t = 0+ с учетом информации, полученной в п. 2;
процедура дифференцирования продолжается до тех пор, пока не будет найдена (n – 1)-ая производная искомой функции в 0+.
Система уравнений для определения постоянных интегрирования имеет следующий вид:
(8.9)
Здесь для определенности полагаем все корни pk вещественными разными числами. Кроме того, следует учитывать, что при наличии в цепи только источников постоянных воздействий значение производных от принужденной составляющей переходного процесса равны нулю.
8.2.5 Переходные процессы в цепях первого порядка
Рассмотрим примеры расчета переходных процессов в неразветвленных электрических цепях, с достаточной степенью наглядности иллюстрирующие физические явления, происходящие в них в переходных режимах.
8.2.5.1 Разряд заряженной ёмкости через сопротивление r
1. Запишем правило коммутации для цепи на рис. 8.5:
.
2. Составим дифференциальное уравнение цепи:
;
.
Характеристическое уравнение первого порядка:
Рис.
8.5
,
корень
которого
.
3. Полное решение дифференциального уравнения:
.
Поскольку уравнение имеет первый порядок, свободная составляющая имеет одну экспоненту
.
4. Определим
принужденную составляющую
.
5. Для определения постоянной интегрирования A запишем полное решение для момента t = 0+
.
Применив правило коммутации, получим окончательное решение
.
Ток в цепи определяется с помощью дифференциального закона Ома
,
,
.
Итак,
имеем две экспоненты, описывающие
изменения
и
.
Графики изменения
и
представлены на рис. 8.6.
Напряжение на конденсаторе непрерывно
в момент коммутации и уменьшается по
экспоненциальному закону от начального
значения U0.
Знак «минус» в выражении для тока говорит
о том, что ток при разряде конденсатора
направлен противоположно току при его
заряде. В начальный момент значение
тока максимально, его спад связан с
уменьшением напряжения на элементах
цепи. Ток на ёмкости меняется скачком.
Введём величину, характеризующую скорость изменения электрической величины в переходном режиме, называемую постоянная времени ().
Величина
показывает, за какой промежуток времени
свободная составляющая переходного
процесса уменьшается в
раз.
Чем
больше
,
тем медленнее переходный процесс, тем
больше
.
Хотя полученные выше выражения определяют
бесконечную длительность переходного
процесса – свободные составляющие лишь
асимптотически стремятся к нулю –
практически можно считать, что переходный
процесс
заканчивается за время, равное
.
Рис. 8.6
П
остоянную
времени можно графически определить
по длине подкасательной, проведённой
в любой точке свободной составляющей
переходного процесса (рис. 8.7).
Постоянная времени измеряется в секундах и для цепей первого порядка связана с корнем характеристического уравнения
. (4.10)
Рассмотрим энергетические соотношения, описывающие работу цепи после коммутации.
Рис. 8.7
Энергия
электрического поля конденсатора до
коммутации –
,
в результате полного разряда при
.