- •1. Биология как наука, содержание, методы исследования. Значение биологии для медицины. Фундаментальные свойства
- •3. Клетка - элементарная и генетическая структурно-функциональная единица живого. Прокариотические и
- •4. Клетка как открытая система. Организация потоков веществ, энергии и информации в клетке. Специализация и интеграция клеток многоклеточного организма.
- •5. Клеточный цикл, его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине.
- •6. Особенности морфологического и функционального строения хромосомы. Гетеро- и эухроматин. Кариотип и идиограмма хромосом человека. Характеристика кариотипа человека в норме и патологии.
- •8. Размножение - универсальное свойство живого, обеспечивающее материальную непрерывность в ряду поколений. Эволюция размножения. Формы размножения.
- •9. Гаметогенез. Мейоз: цитологическая и цитогенетическая характеристика.
- •10. Оплодотворение. Партеногенез (формы, распространенность в природе). Половой диморфизм. Биологический аспект репродукции человека.
- •15. Закономерности наследования при моногибридном скрещивании. Дигибридное и полигибридное скрещивание. Общая
- •16. Независимое комбинирование неаллельных генов и его цитологические основы.
- •18. Сцепление генов. Кроссинговер. Метод соматической гибридизации клеток и его применение для картирования генов
- •19. Наследование признаков человека, сцепленных с полом.
- •20. Взаимодействие неаллельных генов: комплиментарность, эпистаз, гипостаз, эффект положения, модифицирующее действие генов, полимерия.
- •21. Количественная и качественная специфика проявления генов в признаках: пенетрантность, экспрессивность, плейотропность, генокопии.
- •23. Молекулярное строение гена у прокариот и эукариот. Уникальные гены и повторы на нити днк. Цитоплазматическая
- •2. Посттранскрипционные процессы (процессинг).
- •4. Посттрансляционные процессы.
- •24. Классификация генов: гены структурного синтеза рнк, регуляторы. Свойства генов (дискретность, стабильность,
- •25. Экспрессия генов в процессе биосинтеза белка. Регуляция экспрессии генов у прокариот и эукариот.
- •27. Формы изменчивости: комбинативная, мутационная. Их значение в онтогенезе и эволюции. Хромосомные мутации:
- •29. Мутационная изменчивость. Классификация мутаций. Мутация в половых и соматических клетках. Понятие о
- •30. Репарация генетического материала. Фотореактивация. Темновая репарация. Мутации, связанные с нарушением
- •31. Биология развития. Жизненные циклы организмов как отражение их эволюции. Онтогенез и его периодизация. Прямое
- •34. Эмбриональная индукция. Дифференциация и интеграция в развитии. Роль наследственности и среды в онтогенезе.
- •35. Постнатальный онтогенез и его периоды. Роль эндокринных желез в регуляции жизнедеятельности организма в постнатальном периоде.
- •36. Биологические и социальные аспекты старения и смерти. Теории старения. Молекулярные и клеточные проявления
- •37. Регенерация как свойство живого к самообновлению и восстановлению. Физиологическая регенерация, ее биологическое значение.
- •38. Репаративная регенерация и способы ее осуществления. Проявление регенеративной способности в филогенезе. Соматический эмбриогенез. Аутосомия.
- •41. Проблема трансплантации органов и тканей. Ауто- алло- и гетеротрансплантация. Трансплантация жизненно важных
- •42. Биологические ритмы. Классификация биоритмов. Мультиосцилляторная модель регуляции биологических ритмов.
- •43. Жизнь тканей и органов вне организма. Значение метода культуры тканей в биологии и медицине. Клиническая и
- •44. Раздражимость. Анабиоз. Гипотермия.
- •45. История становления эволюционной идеи. Сущность представления ч. Дарвина о механизме органической эволюции. Современный период синтеза дарвинизма и генетики.
- •46. Понятие о биологическом виде. Реальность биологического вида. Популяционная структура вида. Генетическая структура популяции. Правило Харди-Вайнберга.
- •49. Микро- и макроэволюция. Характеристика механизмов, лежащих в основе эволюционных процессов и их результат.
- •50. Типы, формы, правила эволюции групп. Принципы эволюции органов.
- •51. Филогенез скелета, покровов тела позвоночных.
- •52. Филогенез нервной, эндокринной систем хордовых.
- •53. Филогенез кровеносной системы, эволюции сердца, пороки развития сердца человека. Развитие артериальных дуг. Пороки магистральных сосудов.
- •54. Филогенез половой системы / связь выделительной системы с половой /.
- •55. Филогенез пищеварительной и дыхательной систем.
- •56. Индивидуальное и историческое развитие. Биогенетический закон. Филогенез как процесс эволюции онтогенезов,
- •59. Понятие о расах и видовое единство человечества. Современная классификация и распространение человеческих рас.
- •60. Учение о биосфере. Границы, структура и функции биосферы. Основные положения теории в. И. Вернадского и ее
- •61. Человек и биосфера. Ноосфера – высший этап эволюции биосферы. Биотехносфера. Медико-генетические аспекты
- •62. Определение науки экологии. Среда как экологическое понятие. Факторы среды. Экосистема, биогеоценоз,
- •63. Предмет, задачи и методы изучения экологии человека. Биологический и социальный аспекты адаптации населения к
- •68. Жизненные циклы паразитов. Чередование поколений и феномен смены хозяев. Промежуточные, основные, резервуарные и дополнительные хозяева. Понятие о био- и геогельминтах.
- •69. Трансмиссивные и природно-очаговые заболевания. Понятие об антропонозах и зоонозах. Учение академика е. Н.
- •70. Тип Простейшие. Классификация. Характерные черты организации. Значение для медицины.
- •72. Малярийные плазмодии. Систематика, морфология, цикл развития, видовые отличия. Борьба с малярией. Задачи
- •75. Тип Плоские черви. Классификация. Филогенез гельминтов. Характерные черты строения. Схема очага биогельминта.
- •76. Аскарида, власоглав, острица, анкилостомиды, угрица кишечная, ришта, филярии, трихинелла. Систематика,
- •77. Тип Круглые черви. Классификация. Филогенез гельминтов. Характерные черты строения. Схема очага геогельминта.
- •79. Тип Членистоногие. Классификация, характерные черты организации представителей классов Паукообразных и
29. Мутационная изменчивость. Классификация мутаций. Мутация в половых и соматических клетках. Понятие о
хромосомных и генных болезнях.
Мутационная изменчивость. Мутацией (лат. mutatio—перемена) называется изменение, обусловленное реорганизацией воспроизводящих структур, изменением ее генетического аппарата. Этим мутации резко отличаются от модификаций, не затрагивающих генотипа особи. Мутации возникают внезапно, скачкообразно, что иногда резко отличает организм от исходной формы.
Растениеводам и животноводам такие изменения были известны давно. Ряд наследственных изменений описал Дарвин в труде «Изменение домашних животных и культурных растений» (1868). Мутационной изменчивости посвятил свои работы С. И. Коржинский (1899) и Г. де Фриз (1901). Последнему принадлежит термин «мутация».
В настоящее время известны мутации у всех классов животных, растений и вирусов. Существует много мутаций и у человека. Именно мутациями обусловлен полиморфизм человеческих популяций: различная пигментация кожи, волос, окраска глаз, форма носа, ушей, подбородка и т. д. В результате мутаций появляются и наследственные аномалии в строении тела, и наследственные болезни человека.С мутационной изменчивостью связана эволюция— процесс образования новых видов, сортов и пород. По характеру изменений генетического аппарата различают мутации, обусловленные: а) изменением числа хромосом (геномные) б) изменением структуры хромосом (хромосомные аберрации); в) изменением молекулярной структуры гена (генные, или точковые мутации).
Геномная изменчивость. Гаплоидный набор хромосом, а также совокупность генов, находящихся в гаплоидном наборе хромосом, названы геномом. Мутации, связанные с изменением числа хромосом, получили название геномных. К ним относятся полиплоидия и гетероплоидия (анэуплоидия).
Полиплоидия. Это увеличение диплоидного числа хромосом путем добавления целых хромосомных наборов в результате нарушения мейоза. Вспомним, что половые клетки имеют гаплоидный набор хромосом (л), а для зигот и всех соматических клеток характерен диплоидный набор (2л). У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору: Зn — триплоид, 4n — тетраплоид, 5n — пентаплоид, 6n — гексаплоид и т. д. По-видимому, эволюция ряда цветковых растений шла путем полиплоидизации. Культурные растения в своем большинстве— полиплоиды.
Формы, возникающие в результате умножения хромосом одного генома, носят название автоплоидных. Однако известна и другая форма полиплоидии — аллоплоидия, при которой умножается число хромосом двух разных геномов. Аллополиплоиды искусственно получены при гибридизации ряда видов растений и животных. Так, Г. Д. Карпеченко создал аллополиплоидный гибрид редьки и капусты. В данном случае каждый исходный вид имеет 18 хромосом, а гибридный — 36, так как является аллотетраплоидом.
Полиплоидные формы известны и у животных. По-видимому, эволюция некоторых групп простейших, в частности инфузорий и радиолярий, шла также путем полиплоидизации. У некоторых многоклеточных животных полиплоидные формы удалось создать искусственно (тутовый шелкопряд).
Гетероплоидия. В результате нарушения мейоза и митоза число хромосом может изменяться и становиться не кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть парной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромосоме, то такой организм называется трисомиком и его хромосомный набор равен 2n + 1. Трисомия может быть по любой из хромосом и даже по нескольким. Двойной трисомик имеет набор хромосом 2n + 3 тройной — 2лn + 3 и т.
Явление трисомии впервые описано у дурмана. Известна трисомня и у других видов растений и животных, а также у человека. Трисомиками являются, например, люди с синдромом Дауна. Трисомики чаще всего либо нежизнеспособны, либо отличаются пониженной жизнеспособностью и рядом патологических признаков.
Явление, противоположное трисомии, т. е. утрата одной хромосомы из пары в диплоидном наборе, называется моносомией, организм же—моносомиком; его кариотип — 2n— 1. При отсутствии двух различных хромосом организм является двойным моносомиком (2n — 2). Если из диплоидного набора выпадают обе гомологические хромосомы, организм называется ну-лисомиком. Он, как правило, нежизнеспособен.
Из сказанного видно, что анэуплоидия, т. е. нарушение нормального числа хромосом, приводит к изменениям в строении и к снижению жизнеспособности организма. Чем больше нарушение, тем ниже жизнеспособность. У человека нарушение сбалансированного набора хромосом елечет за собой болезненные состояния, известные под общим названием хромосомных болезней.
Хромосомные абберации. Возникают и результате перестройки хромосом. Они являются следствием разрыва хромосомы, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают четыре основных типа хромосомных аберраций: нехватки, удвоения (дупликации), инверсии, транслокации.
Нехватки возникают вследствие потери хромосомой того или иного участка. Нехватки в средней части хромосомы приводят организм к гибели, утрата незначительных участков вызывает изменение наследственных свойств. Так, при нехватке участка одной из хромосом у кукурузы ее проростки лишены хлорофилла.
Удвоение (дупликация) связано с включением лишнего, дублирующего участка хромосомы. Это также ведет к проявлению новых признаков. Так, у дрозофилы ген полоско-видных глаз (вмэсто круглых) обусловлен удвоением участка в одной из хромосом.
Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180°. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным концом, если же в двух местах, то средний фрагмент, перевернувшись, прикрепляется к местам разрыва, но другими концами. Н. П. Дубинин установил, что инверсии широко распространены, в частности у дрозофил, взятых из природы, и, по-видимому, могут играть роль в эволюции видов.
Транслокации возникают в тех случаях. когаа участок хромосомы из одной пары прикрепляется к негомологичной хромосоме, т. е. хромосоме из другой пары Транслокачия участка одной из хромосом (21-й) известна у человека; оно может быть причиной болезни Дауна Большинство крупных хромосомных аберраций в зиготах у человека приводит к тяжелым аномалиям, несовместимым с жизнью, либо к гибели зародышей еще во время внутриутробного развития.
Генные мутации. затрагивают структуру самого гена. Мутации могут изменять участки молекулы ДНК различной длины. Наименьший участок, изменение которого приводит к появлению мутации, назван мутоном. Его может составить только одна пара нуклеотидов. Изменение последовательности нуклеотидов в ДНК обусловливает изменение в последовательности триплетов и е конечном итоге изменяет программу синтеза белка. Следует помнить, что нарушения в структуре ДНК приводят к мутациям только тогда, когда не осуществляется репарация.
Большинство мутаций, с которыми связаны эволюция органического мира и селекция,— трансгенации. Вот несколько примеров мутаций, широко используемых при изучении закономерностей наследственности. У дрозофилы, имеющей в норме красные глаза, появились мутанты с глазами белого цвета, абрикосового цвета, цвета слоновой кости и т. д. Так возникла большая серия аллелей, включающая более 10 мутантных изменений окраски глаз.
Альбинизм животных — типичная генная мутация В результате мутации гороха появились растения с Желтыми и зелеными семенами, с гладкими и морщинистыми зернами, белыми и пурпурными цветками и т. д. Гены, которые возникли в результате мутации одного локуса как известно, являются алле.1ьными. Появление мутации для каждого генного локуса — событие довольно редкое. Различные аллели имеют неодинаковую частоту мутирования. Так, у человека мутация, приводящая к карликовости, встречается в 5—13 гаметах на миллион, мышечной дистрофии (мышечная слабость) в 8—11, микроцефалии (недоразвитие мозга) — в 27, ретинобластомы (опухоль сетчатки глаза) — в 3—12 гаметах на миллион и т. д. Для каждой аллели частота мутирования более или менее постоянна и колеблется в пределах 10-5—10-7. Однако ввиду огромного числа генов у каждого организма мутации довольно часты. Так, у высших растений и животных до 10 % гамет несут какие-либо новые, спонтанно возникшие изменения.
Соматические мутации. Мутации возникают в любых клетках, поэтому их делят на соматические и генеративные. Биологическое значение их неравноценно и связано с характером размножения организмов.
При половом размножении признаки, появившиеся в результате соматических мутаций, потомкам не передаются и в процессе эволюции никакой роли не играют. Однако в- индивидуальном развитии они могут влиять на формирование признака: чем в более ранней стадии развития возникнет соматическая мутация, тем больше участок ткани, несущий данную мутацию. Такие особи называются мозаиками. Например, мозаиками являются люди, у которых цвет одного глаза отличается от цвета другого, или животные определенной масти, у которых на теле появляются пятна другого цвета, и т. п. Не исключено, что соматические мутации, влияющие на метаболизм, являются одной из причин старения и злокачественных новообразований.
Если мутация происходит в клетках, из которых развиваются гаметы, или в половой клетке, то новый признак проявится в ближайшем или последующих поколениях. Наблюдения показывают, что многие мутации вредны для организма. Это объясняется тем, что функционирование каждого органа сбалансировано в отношении как других органов, так и внешней среды. Нарушение существующего равновесия обычно ведет к снижению жизнедеятельности или гибели организма. Мутации, снижающие жизнедеятельность, называются полулетальными.. Мутации, не совместимые с жизнью, носят название летальных (лат. letalis — смертельный). Однако некоторая часть мутаций может оказаться полезной. Такие мутации являются материалом для прогрессивной эволюции, а также для селекции ценных пород домашних животных и культурных растений. По-видимому, чаще всего «полезные» мутации в сочетании с отбором лежат в основе эволюции.