Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы радиохимии и радиоэкологии.doc
Скачиваний:
61
Добавлен:
14.08.2019
Размер:
6.35 Mб
Скачать

10.8 Актиноиды (89Ас, 90Th, 91Pa, 92u, 93Np, 94Pu, 95Am, 96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)

10.8.1 Общие свойства актиноидов

Актиноидами называют группу элементов 7-го периода с порядковыми номерами от 89 (актиний) до 103 (лоуренсий), подобную группе лантаноидов. В группу актиноидов входят: торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, энштейний, фермий, менделеевий, нобелий, лоуренсий.

В таблице 9.1. представлены наиболее важные изотопы актиноидов:

Таблица 9.1. Наиболее важные изотопы актиноидов

Изотоп

Период полураспада

Изотоп

Период полураспада

Изотоп

Период полураспада

227Ac

22 года

244Pu

7,6107 лет

251Cf

660 лет

232Th

1.391010 лет

241Am

458 лет

252Cf

2.6 г

231 Pa

34300 лет

241Am

433 года

253Es

20,47 сут

233 Pa

27 сут

243Am

7600 лет

254Es

280 суток

233U

1.62105 лет

242Cm

162,5 суток

255Es

39.3 сут

235U

7.13108 лет

244Cm

19 лет

257Fm

94 cут

238U

4.5109 лет

247Cm

4107 лет

256Md

75 мин

235Np

410 сут

248Cm

4,7105 лет

258Md

56 сут

237Np

2.2106 лет

250Cm

2104 лет

255No

3.0 мин

238Pu

86,4 года

247Bk

1300 лет

259No

1.5 час

239Pu

24360 лет

248Bk

314 суток

256Lr

35 c

242Pu

3.79105 лет

24 9Cf

352 г

260Lr

3 мин

В свою очередь отдельные группы актиноидов объединяют в подгруппы: все элементы следующие за ураном называют трансурановыми элементами, элементы, следующие за америцием, называют трансамерициевыми элементами и т.д.

В процессе рассмотрения химии тяжелых элементов – тория, протактиня, урана и трансурановых элементов Глен Сиборг в 1946 г. выдвинул актиноидную теорию. В соответствии с этой теорией элементы с порядковыми номерами 89-103 образуют 5f –семейство и по аналогии с лантаноидами размещаются в периодической системе в виде отдельной группы.

В настоящее время имеется много доказательств справедливости актиноидной гипотезы (электронные конфигурации атомов, спектры и магнитные свойства актиноидных и лантаноидных элементов). Согласно актиноидной теории Сиборга всего в слое 5 f может находиться 14 электронов. Следовательно,103-й элемент должен быть последним актиноидом, так как у него будут полностью застроены уровни 5f, 6s и 6p. С другой стороны, следует ожидать, что 104-й элемент будет находиться в состоянии 6d2 7s2, т.е. относиться к четвертой группе системы Менделеева, следовательно, по своим свойствам он должен быть похож на торий.

Рис. Глен Сиборг

По своему химическому поведению актиноиды занимают промежуточное положение между f - и d- элементами. Этим объясняется большое многообразие валентных состояний у актиноидов по сравнению с соответствующими лантаноидами. Последнее объясняет двойственность химического поведения легких актиноидов. По мере заполнения электронами 5f-подуровня относительная энергия 5f-электронов уменьшается и становится меньше энергии 6 d -подуровня. При этом уменьшается разнообразие валентных форм тяжелых актиноидов, которые все в большей степени проявляют свойства присущие лантаноидам. Особенно отчетливо своеобразие химических свойств проявляется у элементов от актиния до кюрия. Для элементов от урана до америция характерно наибольшее разнообразие степеней окисления.

Актиноиды в степени окисления +3 являются химическими аналогами лантаноидов, но обладают более сильно выраженной способностью к комплексообразованию.

Актиноиды в степени окислении +4 являются химическими аналогами тория и церия (1У) в большей степени, чем гафения и циркония. В степени окисления +4 эти элементы являются сильными комплексообразователями.

В степени окисления +5 все рассматриваемые элементы существуют в виде диоксиионов состава МеО .

В степени окисления +6 все рассматриваемые элементы находятся в виде диоксиионов состава МеО . Для урана эта степень является наиболее устойчивой. Степнь окисления +7 характерна для нептуния, плутония, америция.

С учетом вышеизложенного химические свойства актиния, тория и протактиния, урана будут рассмотрены отдельно, свойства более тяжелых актиноидов – по группам.

Основным источником получения природных изотопов элементов от актиния до урана включительно являются руды, содержащие уран и торий.

Методы искусственного получения актиноидов можно разделить на две группы.

Первая группа методов – облучение тория, урана и более тяжелых элементов нейтронами. Ядерные реакции, лежащие в основе этих методов, представляют собой многократно повторяющуюся реакцию радиационного захвата ядром нейтрона (n,) c последующим бета-распадом ( реакторный метод). Этим методом могут быть получены только изотопы с избытком нейтронов. Облучение нейтронами может осуществляться в ядерных реакторах с высокой интенсивностью потока нейтронов ( 1013 – 1015 н/см2·с).

Получение трансурановых элементов в ядерном реакторе является единственным методом их промышленного производства.

Первая попытка синтеза трансурановых элементов относится к 1934 г. когда Э. Ферми провел серию работ по облучению урана медленными нейтронами. Однако выделить элементы 93 и 94 в этих исследованиях не удалось. Открытие первых шести трансурановых актиноидов впервые было осуществлено группой Глена Сиборга в Беркли (США) в период с 1940 по 1950 г. Они были получены облучением урана нейтронами.

238U (n, ) 239U 239Np 239Pu

С увеличением атомного номера и массового числа синтезируемого элемента резко уменьшается его выход. Самый тяжелый элемент, который может быть получен реакторным методом– Fm. Однако накопить этот изотоп в ядерном реакторе невозможно, из-за того , что время, необходимое для присоединения нейтрона по реакции

257Fm (n, ) 258Fm

значительно больше, чем период спонтанного деления образующегося продукта 258Fm ( Т ½ =3.8∙10-4 с).

Вторая группа методов получения трансурановых элементов состоит в облучении урана и более тяжелых элементов заряженными частицами с использованием ускорителей различных типов (ускорительный метод). Использование в качестве бомбардирующих ускоренных ионов дейтерия и гелия позволяет получить элементы вплоть до менделевия:

; ; Es (,n) Md

По своему химическому поведению актиноиды занимают промежуточное положение между элементами f - и d- серий. Этим объясняется большое многообразие валентных состояний у актиноидов по сравнению с соответствующими лантаноидами.

Основная степень окисления лантаноидов +3. Актиноиды благодаря меньшей энергии связи электронов на 5 f-уровне по сравнению с 4 f –электронами у лантаноидов и наличию у первых актиноидного ряда 6 d-электронов проявляют ряд степеней окисления. Степень окисления +3 не обнаружена у тория и не характерна для протактиния, мало устойчива для урана и нептуния, легко переходит в +4 для плутония. Начиная с америция, степнь окисления +3 является наиболее устойчивой. У калифорния и следующих за ним актиноидов появляется степень окисления +2, устойчивость которой растет от кюрия до менделевия. Для последнего она является наиболее устойчивой степенью окисления.

В таблице приведены степени окисления актиноидов в растворе

Таблица

Элемент

Ac

89

3

Cm

96

3,4

Th

90

(3),4

Bk

97

3,4

Pa

91

4, 5

Cf

98

2,3,4

U

92

3, 4, 5, 6

Es

99

2, 3

Np

93

3, 4, 5, 6, 7

Fm

100

2, 3

Pu

94

3, 4, 5, 6 ,7

Md

101

1, 2, 3

Am

95

2, 3, (4), 5, 6 ,7

No

102

2, 3

Lr

103

3

У лантаноидов в образовании связи участвуют d- и s -электроны. Переход с уровня 4f на 5d у них затруднен, требует значительной энергии, поэтому у лантаноидов степени окисления выше +3 осуществляются с трудом и лишь для некоторых лантаноидов. Переходы актиноидов из состояния окисления +3 и +4 в состояние окисления +5 и +6 затруднены по сравнению с переходами +3 в +4 и +5 в +6 вследствие изменения структуры иона, например,

Me4+ + 2H2O MeO + 4H++ 2e-

Актиноиды – активные металлы, легко вступающие в реакции практически со всеми химическими элементами с образованием соответствующих соединений. Их химическая активность растет с увеличением атомного номера.

В растворе актиноиды образуют гидратированные ионы вида:

Ме2+[Cf– No]

Ме3+[Ac –Lr]

Ме4+(Th, U– Cf; Am, Cm и Cf только в виде комплексных ионов)

МеО (U – Am)

МеО (U – Am)

МеО или (МеО5· nH2O) 3 (Np, Pu, Am)

Ионы актиноидных элементов имеют небольшой размер и значительный заряд.

Ионные радиусы актиноидов, подобно лантаноидам, падают с ростом порядкового номера (табл.). Вследствие этого в водных растворах они гидролизованы. Не гидролизованные трех- и четырехзарядные ионы актиноидов существуют только в достаточно кислых растворах в отсутствие лигандов, имеющих большое сродство к катионам, практически в среде HClO4.

Они гидратированы и имеют состав Me(H2O) и Me(H2O) . В других кислотах начинается комплексообразование. Гидролиз протекает по схеме

Me (H2O) + m H2O Me(OH)m(H2O)

Аналогично протекает и комплексообразование

Me (H2O) + mАу-

Таблица Ионные радиусы актиноидов

Ион

Радиус, нм

Ион

Радиус, нм

Ион

Радиус,нм

Ас3+

1.071

Bk3+

0.975

-

-

Th3+

1.051

Cf3+

0.962

Th4+

0.984

Pa3+

1.034

Es3+

0.953

Pa4+

0.944

U3+

1.022

Fm3+

0.943

U4+

0.929

Np3+

1.011

Md3+

0.934

Np4+

0.913

Pu3+

1.001

No3+

0.928

Pu4+

0.896

Am3+

0.993

Lr3+

0.921

Am4+

0.888

Cm3+

0.985

Cm4+

0.886

Bk4+

0.870