Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы радиохимии и радиоэкологии.doc
Скачиваний:
61
Добавлен:
14.08.2019
Размер:
6.35 Mб
Скачать

5.2.2 Тормозное излучение (радиационные потери)

В отличие от заряженных частиц с большой массой, при движении -частиц через поглощающую среду, существенную роль наряду с ионизационными потерями играют потери на излучение, возникающее при торможении электронов в кулоновском поле ядер. При пролете в – частицы рядом с ядром, он притягивается его положительным полем. Скорость в – частицы сильно изменяется, она приобретает некоторое ускорение, что согласно классической электродинамике, сопровождается электромагнитным излучением. При этом энергия в – частицы уменьшается на ∆Е и передается, возникающему кванту электромагнитного излучения. Возникшее электромагнитное излучение, называется тормозным, а потери энергии– радиационными. Средние радиационные потери энергии электронов на единицу длины пути составляют:

, (5. 6)

где Z – атомный номер поглотителя;

Е – энергия электрона;

Ф – функция радиационных потерь.

Как видно из формул (5.5) и ( 5.6), радиационные потери возрастают пропорционально Z2, а ионизационные - пропорционально Z.

При малых энергиях электронов преобладают ионизационные потери, при больших – радиационные. Полная потеря энергии электронов в поглотителе складывается из ионизационных и радиационных потерь:

(5.7)

Энергия электронов, при которой ионизационные потери в данном веществе сравниваются с радиационными, называется критической энергией.

(5.8)

Для свинца критическая энергия приблизительно равно 10 МэВ:

Однко для значений энергий, наблюдаемых при радиоактивном распаде, тормозное излучение обычно весьма невелико, особенно в поглотителях с низкой атомной массой.

5.2.3 Излучение вавилова – черенкова

Скорость света в веществе сґ зависит от показателя преломления n:

сґ= сn-1 (5.9)

Если в – частицы движутся в прозрачной среде (воде) со скоростью превышающей скорость света (Ев0,6 МэВ) то в среде при прохождении частицы когерентно испускается электромагнитное излучение в конусе, ось которого совпадает с направлением движения частицы (рис.5.1.). Такое излучение называется излучением Вавилова – Черенкова. Излучение Вавилова – Черенкова представляет собой голубоватое свечение, наблюдаемое в высокоактивных растворах и вокруг тепловыделяющих сборок реактора, погруженных в воду. Возникновение излучения Вавилова - Черенкова характерно только для высокоэнергетичных в – частиц с энергий >0,6 МэВ. Для быстрых электронов потери энергии на излучение Вавилова – Черенкова составляют менее 0,1% потерь энергии на все другие процессы.

5.2.4 Электронно–позитронная аннигиляция

Позитроны взаимодействуют с веществом в результате ионизации, возбуждения, испускания тормозного излучения и излучения Вавилова

– Черенкова таким же образом как и отрицательные электроны. Кинетическая энергия позитрона в поглотителе уменьшается, поэтому вероятность прямого взаимодействия между позитроном и электроном возрастает. При этом позитрон и электрон аннигилируют с испусканием фотонов. Энергия соответствующая массе двух электронов, превращается в электромагнитное излучение. Этот процесс известен как аннигиляция пары электрон– позитрон и используется для идентификации излучения позитронов. Масса электрона эквивалентна энергии, равной 0,51 МэВ, а кинетическая энергия частиц при аннигиляции по существу равна нулю, поэтому полная энергия процесса аннигиляции составляет 1,02 МэВ. Чтобы сохранить момент, должны испускаться по крайней мере 2 фотона с равной энергией. Наличие в электромагнитном спектре радионуклида гамма-квантов с энергией 0,51 МэВ служит надежным свидетельством присутствия в нем позитронного излучения, испускаемого данным радионуклидом.