Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы радиохимии и радиоэкологии.doc
Скачиваний:
61
Добавлен:
14.08.2019
Размер:
6.35 Mб
Скачать

Глава 5. Взаимодействие ядерного излучения с веществом

Как отмечалось раньше, при радиоактивном распаде из ядер вылетают альфа- частицы, электроны и гамма - кванты. Потоки испускаемых при радиоактивном распаде частиц называют радиоактивным излучением. Но радиоактивный распад- не единственный источник быстрых частиц. Космическое пространство пронизывают потоки различных частиц- протонов, альфа - частиц, ядер более тяжелых элементов, электронов, фотонов, энергии которых достигают колоссальных значений вплоть до 1020эВ ( 1 Дж= 6,24·1018 эВ).Это- космическое излучение. Мощные потоки быстрых заряженных частиц получают с помощью ускорителей. Ядерные реакторы также являются источником различных частиц, в том числе нейтронов. При взаимодействии быстрых частиц с веществом возникают новые нестабильные частицы- мезоны, гипероны и др. Потоки всех частиц, возникающих при естественных процессах и получаемых искусственно, объединяют под общим названием ядерного излучения.

Все виды ядерного излучения, как корпускулярные, так и электромагнитные, могут быть обнаружены только по их взаимодействию с веществом.

Излучение высокой энергии возникает при распаде ядер томов или получается с помощью ускорителей заряженных частиц. Его энергия на много порядков выше энергии химических свяей. Взаимодействте такого излучения с веществом подчиняется закону Эйнштейна об эквивалентности массы и энергии.

Различают два типа взаимодействия ядерного излучения с веществом – упругое и неупругое.

При упругом взаимодействии сумма кинетических энергий взаимодействующих частиц (или фотонов и частиц) не изменяется, происходит лишь перераспределение энергии между участниками взаимодействия. При этом сами частицы изменяют направление своего движения, т.е. происходит процесс рассеяния. Это взаимодействие так и называется - упругое рассеяние. Такие процессы не представляют интереса, кроме случая, когда в результате упругого взаимодействия часть энергии гамма-кванта передается свободному электрону.

При неупругом взаимодействии сумма кинетических энергий участников взаимодействия уменьшается, так как часть кинетической энергии переходит в другие формы (энергию возбуждения, энергию разрыва связей (ионизацию) и, в конечном счете рассеивается в виде теплоты и длинноволнового излучения.

Заряженные частицыпротоны, электроны, мезоны, ядра гелия и ядра более тяжелых элементов взаимодействуют с электронами атомных оболочек и ядрами встречных атомов главным образом в результате действия электростатических (кулоновских) сил. При близких столкновениях тяжелых частиц, в том числе и нейтронов, с ядрами, в действие вступают ядерные силы.

Гамма-кванты воздействуют на атомные электроны и ядра своим электромагнитным полем. Взаимодействие гамма- квантов со средой приводит к образованию относительно небольшого числа электронов (в некоторых случаях и позитронов) которые вызывают дальнейшую ионизацию среды. Поэтому гамма-излучение часто называют косвенно ионизирующим.

Ионизирующее излучение характеризуют величиной удельной ионизации - числом пар ионов, образуемых частицей или гамма - квантом на единицу пути.

Ионизирующее действие излучений широко используется для их регистрации.

С ионизирующим действием связан ряд вторичных эффектов, которые также используются для регистрации излучения или измерения доз, создаваемых радиоактивными веществами. Например, возбужденные атомы и молекулы, которые вместе с ионами образуются вдоль пути ионизирующей частицы, могут переходить в основное состояние, испуская электромагнитное излучение.

У некоторых веществ часть спектра лежит в видимой или в УФ - областях, при этом прохождение излучения через такие вещества, сопровождается вспышкой (сцинтилляцией). На этом принципе основано действие сцинтилляционных детекторов.

Все эти виды взаимодействия имеют разную природу и по-разному проявляются для внешнего наблюдателя. В то же время общим для всех видов взаимодействия ядерного излучения с веществом является то, что энергия падающих частиц передается атомам вещества. Соответственно, по мере углубления в среду энергия, скорость и интенсивность излучения уменьшаются, в результате чего слои вещества могут служить защитой от ядерного излучения.

Рис. 5.1 Прохождение ядерного излучения через разные материалы

Процесс взаимодействия, в результате которого заряженные частицы теряют энергию вследствие ионизации и возбуждения, называется ионизационным торможением (ионизационными потерями).

Рассмотрим более подробно вопросы поглощения (ослабления) различных видов излучения при прохождении через вещество.

Характеристика, которая позволяет сравнивать поглощающую способность разных веществ по отношению к излучению, называется тормозной способностью. Она определяется количеством энергии, которую теряет излучение на единицу своего пути.