
- •Курс лекций по теории электрических цепей
- •Часть 1
- •Предисловие
- •1.Основные определения, понятия и законы в теории электрических цепей
- •1.1.Закон Ома для участка цепи, не содержащего эдс
- •1.2.Законы Кирхгофа
- •2.Цепи однофазного синусоидального тока и напряжения
- •2.1.Среднее и действующее значение периодической функции (тока и напряжения)
- •2.2.Элементы r,l,c в цепях синусоидального тока
- •2.2.1.Сопротивление (r)
- •2.2.2.Индуктивность (l)
- •2.2.3.Ёмкость (с)
- •2.3.Изображение синусоидальных функций времени (напряжение, сила тока, мощность) векторами на комплексной плоскости
- •2.4.Основы символического (комплексного) метода расчета цепей синусоидального тока
- •2.5.Последовательное соединение элементов r,l,c
- •2.6.Резонанс напряжений
- •2.7.Частотные характеристики последовательного колебательного контура
- •2.8.Параллельное соединение элементов r, l, c; проводимости
- •2.9.Резонанс токов
- •2.10.Частотные характеристики параллельного колебательного контура
- •2.11.Мощности
- •2.12.Выражение мощности в комплексной форме
- •2.13.Передача энергии от активного двухполюсника к пассивному
- •2.14.Коэффициент мощности
- •3.Методы расчета сложных цепей
- •3.1.Применение законов Кирхгофа для расчета разветвленных электрических цепей
- •3.2.Метод контурных токов
- •3.3.Метод узловых потенциалов
- •3.4.Метод двух узлов
- •3.5.Принцип наложения, метод наложения
- •3.6.Входные и взаимные проводимости
- •3.7.Свойство взаимности
- •3.8.Преобразование треугольника сопротивлений в эквивалентную звезду и обратное преобразование
- •3.9.Метод эквивалентного генератора (активного двухполюсника)
- •4.Трехфазные цепи
- •4.1.Трехфазный генератор
- •4.2.Способы соединения фаз генератора и нагрузки звездой и треугольником
- •4.2.1.Соединение фаз генератора и нагрузки четырехпроводной звездой
- •4.2.2. Соединение фаз генератора и нагрузки треугольником
- •4.3.Режимы работы трехфазных цепей
- •4.3.1.Соединение «звезда-звезда» с нулевым проводом и без нулевого провода
- •1. Симметричная нагрузка
- •2. Несимметричная нагрузка
- •3. Обрыв фазы
- •4. Короткое замыкание фазы
- •5. Разнородная нагрузка
- •4.3.2.Соединение потребителей треугольником
- •4.4.Мощность трехфазных цепей
- •4.5.Измерение мощности в трехфазных цепях
- •4.6.Метод симметричных составляющих
- •4.7.Фильтры симметричных составляющих
- •5.Способы Получения вращающегося Магнитного поля
- •5.1.Пульсирующее магнитное поле
- •5.2.Вращающееся магнитное поле системы двух катушек
- •5.3.Вращающееся магнитное поле системы трёх катушек
- •6.Цепи со взаимной индуктивностью
- •6.1.Эдс взаимоиндукции
- •6.2.Расчет цепей при наличии взаимной индуктивности
- •6.2.1.Последовательное согласное соединение катушек
- •6.2.2.Последовательное встречное соединение
- •6.2.3.Параллельное согласное соединение
- •6.2.4.Параллельное встречное соединение
- •6.2.5.Расчет разветвлённых цепей при наличии взаимной индуктивности
- •6.2.6."Развязывание" магнитосвязанных цепей
- •6.2.7.Линейный (воздушный) трансформатор
- •6.2.8.Вносимое сопротивление трансформатора
- •7.Несинусоидальные токи
- •7.1.Разложение периодической функции в тригонометрический ряд
- •7.2.Амплитудное, среднее и действующее значения периодических несинусоидальных функций
- •7.3.Коэффициенты, характеризующие форму несинусоидальных периодических функций
- •7.4.Мощность периодических несинусоидальных токов
- •7.5.Несинусоидальные функции времени с периодической огибающей
- •7.5.1.Биения
- •7.5.2.Модуляция
- •7.6.Резонансные явления в цепях с несинусоидальными источниками
- •7.7.Методика расчета цепей с несинусоидальными источниками
- •7.8.Высшие гармоники в трехфазных цепях
- •7.8.1.Высшие гармоники при соединении фаз источника и приемника звездой
- •7.8.2.Высшие гармоники при соединении фаз генератора и приемника треугольником
- •Часть 1
- •625000, Тюмень, ул. Володарского, 38
- •625000, Тюмень, ул. Володарского, 38
2.1.Среднее и действующее значение периодической функции (тока и напряжения)
Fср=
,
13(2.10)
где f(t) – периодическая функция, T – период функции.
Ввиду симметричности синусоиды получаем, что среднее значение за период равно нулю, поэтому вводят понятие среднего значения за половину периода.
T/2
0
=
Fm;
Fср
=
=
Fm.
14 15(2.11)
Значительно большее значение имеет понятие действующего значения. Для его осмысления оценим тепловое действие переменного и постоянного тока.
Переменный ток
W =
;
Постоянный ток
W = I2RT;
Приравняв правые части и произведя простые операции, получим
I
= IД =
,
16(2.12)
где
=
=
.
Подставим полученный результат под корень и получим
I
=
, 17(2.13)
где ( 2 .13) – среднеквадратичное, эффективное или действующее значение синусоидального тока.
Аналогично,
.
Рис.2.10. Графическое изображение действующего значения
2.2.Элементы r,l,c в цепях синусоидального тока
2.2.1.Сопротивление (r)
Пусть по сопротивлению протекает синусоидальный ток с начальной фазой, равной нулю
i = Imsint. 18(2.14)
Рис.2.11. Условно-положительные направления тока и напряжения на сопротивлении
Определим падение напряжения, действующее на зажимах сопротивления на основании закона Ома,
u = iR = ImRsint = Umsint. 19(2.15)
Полученный результат показывает, что напряжение изменяется в фазе с током.
Определим функцию мгновенной мощности, потребляемую R,
;
p = UI(1 – cos2t), 20(2.16)
где U, I – действующие значения.
Рис.2.12. Графики мгновенных значений напряжения, тока и мощности на сопротивлении
Из графика мгновенной мощности следует, что она неотрицательна и меняется с удвоенной частотой.
Для оценки потребляемой приемником мощности вводят понятие средней мощности за период:
,
[Вт]. 21(2.17)
2.2.2.Индуктивность (l)
Пусть через индуктивность протекает синусоидальный ток
i = Imsint;
Рис.2.13. Условно-положительные направления тока, напряжения и ЭДС самоиндукции
Определим падение напряжения на индуктивности uL. На основании закона электромагнитной индукции
L
= – L
= – LImcost
= LImsin(t–/2)
= XLImsin(t–/2),
где
– индуктивное (реактивное) сопротивление.
uL = eL = Umsin(t + /2). 22(2.18)
Напряжение на индуктивности опережает ток на 900.
Мгновенная мощность на индуктивности
p = ui = (UmImsin2t)/2=UIsin2t. 23(2.19)
Среднее значение мощности за период
. 24(2.20)
Для оценки запасенной в индуктивности энергии магнитного поля вводят понятие реактивной (индуктивной) мощности
,[вар]
25(2.21)
Рис.2.14. Графики мгновенных значений напряжения, тока и мощности на индуктивности
Из графика мгновенной мощности следует, что положительная полуволна мощности соответствует потреблению энергии из сети, а отрицательная – ее возврату в сеть.
Энергия, потребляемая индуктивностью, работы не совершает.