
- •1.Понятие множества. Операции производимые над множествами.
- •2. Числа. Числовые множества. Числовая ось. Окрестности точки.
- •3. Отображения между множествами. Функции и их опредиления.
- •4. Элементарные функции. Их свойства и графики.
- •5. Числовые последовательности. Предел числовой последовательности.
- •6. Непрерывность функции в точке. Предел функции в точке.
- •7. Производная функции. Геометрический и физический её смысл.
- •Определение производной функции через предел
- •1) Физический смысл производной.
- •2) Геометрический смысл производной.
- •8. Производные от элементарных функций. Таблица производных.
- •9. Дифференциал функций и его применение для приближённых вычислений..
- •10. Экстремум функции. Необходимые и достаточные условия его существования.
- •11. Точки перегиба функций, выпуклость и вогнутость функции.
- •12. Типовое исследование непрерывных и дифференцируемых функций.
- •13. Функции многих переменных и их непрерывность.
- •14. Производные и дифференциалы функций многих переменных.
- •15. Первообразная и непосредственный интеграл от функции.
- •Непосредственное интегрирование
- •16. Методы вычисления непосредственных интегралов.
- •18. Производные высших порядков. Методы их вычисления.
- •17. Определённый интеграл и способы его вычисления.
- •Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной
- •19. Ряды Маклорана и Тейлора дифференцируемых функций.
- •20. Общее понятие о линейных векторных пространствах. Их определение.
- •21. Базисы в лвп. Их преобразования. Координатное представление векторов.
- •22. Основные операции производимые над векторами.
- •23. Линейные отображение в лвп. Предоставление линейных преобразований матрицами..
- •24. Определение матриц. Основные операции, осуществляемые над матрицами.
- •25. Системы векторов. Ранг системы векторов. Ранг матрицы.
- •Ранг матрицы
- •26. Определители матриц. Правила и методы их вычисления.
- •27. Системы линейных уравнений и методы их решений.
3. Отображения между множествами. Функции и их опредиления.
Отображения множеств. В М. т. аналитическое понятие функции, геометрическое понятие отображения или преобразования фигуры и т. п. объединяются в общее понятие отображения одного множества в другое. Пусть даны два множества Х и Y, пусть каждому элементу х Î Х поставлен в соответствие некоторый определённый элемент у = f(x) множества Y; тогда говорят, что имеется отображение множества Х в множество Y, или что имеется функция, аргумент х которой пробегает множество X, а значения у принадлежат множеству Y; при этом для каждого данного х Î Х элемент у = f(x) множества Y называется образом элемента х Î Х при данном отображении или значением данной функции для данного значения её аргумента х.
Примеры. 1) Пусть задан в плоскости с данной на ней прямоугольной системой координат квадрат с вершинами (0; 0), (0; 1), (1; 0), (1; 1) и осуществлена проекция этого квадрата, например на ось абсцисс; эта проекция есть отображение множества Х всех точек квадрата на множество Y всех точек его основания; точке с координатами (х; у) соответствует точка (х; 0).
2) Пусть Х — множество всех действительных чисел; если для каждого действительного числа x Î X положить у = f(x) = x3, то тем самым будет установлено отображение множества Х в себя.
3) Пусть Х — множество всех действительных чисел; если для каждого х Î Х положить у = f(x) = arctg х, то этим будет установлено отображение множества Х на интервал ( — p/2, p/2).
(1—1)-соответствие между двумя множествами Х и Y есть такое отображение множества Х в множество Y, при котором каждый элемент множества Y является образом одного и только одного элемента множества X. Отображения примеров 2) и 3) взаимно однозначны, примера 1) — нет.
Функция — математическое понятие, отражающее связь между элементами множеств. Более точно, это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).
Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной x однозначно определяет значение выражения x2, а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека — его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.
Обычно рассматриваются числовые функции, которые ставят одни числа в соответствие другим. Такие функции обладают рядом отличительных свойств и удобно представляются на рисунках в виде графиков.
Интуитивное определение
Функция f (отображение, операция, оператор) — это закон или правило, согласно которому каждому элементу x из множества X ставится в соответствие единственный элемент y из множества Y
При этом говорят, что функция f задана на множестве X, или что f отображает X в Y.
Если
элементу
сопоставлен элемент
,
то говорят, что элемент y находится в
функциональной зависимости f от элемента
x. При этом переменная x называется
аргументом функции f или независимой
переменной, множество X называется
областью задания или областью определения
функции, а элемент y, соответствующий
конкретному элементу x — частным
значением функции f в точке x. Множество
Y всех возможных частных значений функции
f называется её областью значений или
областью изменения.
Теоретико-множественное определение
В
теоретической математике функцию f
удобно определить как бинарное отношение
(то есть множество упорядоченных пар
),
которое удовлетворяет следующему
условию: для любого
существует единственный элемент
такой, что
.
Это и позволяет говорить о том, что элементу сопоставлен один и только один элемент такой, что .
Таким образом, функция — это упорядоченная тройка (или кортеж) объектов (f,X,Y), где
множество X называется о́бластью определе́ния;
множество Y называется о́бластью значе́ний;
множество
упорядоченных пар
или, что то же самое, график функции.
Определение функции легко обобщить на случай функции многих аргументов.
Если
множество X представляет собой декартово
произведение множеств
,
тогда отображение
оказывается n-местным отображением, при
этом элементы упорядоченного набора
называются аргументами (данной n-местной
функции), каждый из которых пробегает
своё множество:
где
.
В
этом случае y = f(x) означает, что
.