- •1. Особливості та принципи економетри моделювання економ систем і процесів.
- •2. Поняття економетричної моделі її складові
- •3. Причина,які спонукають появу стохастичної складової
- •4. Етапи побудови економетричної моделі
- •6. Модель пропозиції та попиту
- •7. Модель Кейнса
- •8. Прогнозування: суть методи, класифыкацыйны ознаки
- •9. Використання економетричних моделей для прийняття управлінських рішень
- •10. Метод найменших квадратів та передумови його використання
- •12. Властивості оцінок параметрів
- •13. Умови Гаусса-Маркова для економетричних моделей парної та множинної регресії
- •14. Економетрична модель парної лінійної регресії
- •15. Оцінювання параметрів парної регресійної економетричної моделі за мнк
- •16. Розрахунок та аналіз значень коефіцієнтів детермінації та кореляції.
- •17. Перевірка адекватності моделі парної регресії та статистичної значимості оцінок її параметрів, коєфіцієнтів детермінації та кореляції.
- •18. Перевірка значущості оцінок параметрів моделі та побудова довірчих інтервалівдля оцінок параметрів моделі
- •19. Прогнозування на основі економетричних моделей парної регресії. Точкових та інтервальних прогноз.
- •20 Економчних аналіз моделі парної регресії: середня ефективність впливу чинників, гранична ефективність та коефіцієнти еластичності
- •21)Економетрична модель множинної лінійної регресії.
- •22)Оцінювання параметрів множинної регресійної економетричної моделі за мнк.
- •23)Коефіцієнти детермінації та кореляції множинної економетричної моделі, їх аналіз. Скоригований коефіцієнт детермінації.
- •Перевірка гіпотез про статистичну значимість лінійної моделі множинної регресії, коефіцієнтів регресії, коефіцієнта детермінації, коефіцієнта кореляції.
- •Перевірка гіпотез про значення коефіцієнтів регресії множинної регресійної моделі. Інтервали надійності для коефіцієнтів множинної регресії. ;
- •26.Прогнозування на сонові економетрични моделей множинної регресії. Точковий та інтервальний прогноз
- •27.Економічний аналіз моделі множинної регресії: середня ефективність впливу чинників, гранична ефективність, коефіцієнти еластичності.
- •28Нелінійні моделі. Лінеаризація нелінійних моделей.
- •29.Поліноміальні модель, побудова оцінок її параметрів.
- •30. Гіперболічна модель
- •31. Показникові моделі, побудова оцінок її параметрів.
- •Виробнича функція Кобба-Дугласа, побудова оцінок її параметрів.
- •Метод максимальної правдоподібності.
- •34.Застосування нелінійних функцій в економіці
- •35. Врахування якісних факторів в лінійних економетричних моделях за допомогою фіктивних змінних.
- •Моделі з фіктивними незалежними змінними: моделі, що містять тільки якісні незалежні змінні.
- •37/Моделі з фіктивними незалежними змінними: моделі в яких незалежні змінні носять як якісний так і кількісний характер.
- •38) Порівняння 2-х регресій. Тест Чоу.
- •39. Моделі з фіктивними залежними змінними. Модель lpm
- •41. Моделі з порушенням передумов використання мнк: мультиколінеарність
- •42. Cуть мультиколінеарності
- •43. Наслідки мультиколінеарності
- •44. Ознаки регресійної моделі які вказують на наявність мультиколінеарності
- •45 .Алгоритм Фаррара - Глобера
- •46. Методи звільнення від мультиколінеарност.
- •47 Метод гребеневої регресії усунення мультиколінеарності.
- •48. Моделі з порушенням передумов використання мнк: гетероскедастичність залишків.
- •49. Суть гетероскедастичності
- •50. Наслідки гетероскедастичності
- •51 .Методи визначення гетероскедастичності, тест рангової кореляції Спірмена
- •52.Методи виявлення гетероскедастичності, тест Парка
- •53.Методи виявлення гетероскедастичності, тест Голдфелда-Квандта.
- •55.Метод зважених найменших квадратів оцінювання параметрів моделі з гетероскедастичними залишками при невідомих дисперсіях відхилень спостережень.
- •56. Моделі з порушенням передумов використання мнк: автокореляція залишків.
- •57. Суть автокореляції
- •58. Наслідки автокореляції
- •59. Способи визначення автокореляції залишків. Критерій Дарбіна – Уотсона
- •60.Крім критерію Дарбіна – Уотсона використовують також критерій фон Неймана:
- •61. Нециклічний коефіцієнт автокореляції
- •62. Метод Ейткена
- •63. Метод перетворення вихідної інформації
- •Поняття часового ряду та специфікація його дослідження. Основні компоненти часового ряду.
- •65. Часові ряди та їх основні числові характеристики.
- •66. Вирівнювання часових рядів. Ковзні середні й автокореляція
57. Суть автокореляції
Розглянемо класичну лінійну багатофакторну модель:
Одним
із припущень класичного регресійного
аналізу є припущення про незалежність
випадкових величин
,
і = 1, ...,
,
тобто якщо це припущення порушується,
то ми маємо справу з явищем, яке
називається автокореляціею залишків.
Автокореляція – це явище, яке вказує на інерційність процесів, які проходять в економіці.
Автокореляція – це взаємозв’язок послідовних елементів часового ряду даних.
Автокореляція залишків виникає найчастіше тоді, коли економетрична модель будується на основі часових рядів. Якщо існує кореляція (залежність) між послідовними значеннями деякої незалежної змінної, то спостерігатиметься й кореляція послідовних значень залишків, так звані лагові затримки (запізнювання) в економічних процесах.
Автокореляція може виникати через інерційність і циклічність багатьох економічних процесів. Провокувати автокореляцію також може неправильно специфікована функціональна залежність у регресійних моделях. Крім того, наявність автокореляції залишків може означати, що необхідно ввести до моделі нову незалежну змінну.
У загальному випадку ми вводимо до моделі лише деякі з істотних змінних, а вплив змінних, які виключені з моделі, має позначитися на зміні залишків. Існування кореляції між послідовними значеннями виключеної з розгляду змінної не обов’язково має тягти за собою відповідну кореляцію залишків, бо вплив різних змінних може взаємно погашатися. Якщо кореляція послідовних значень виключених з моделі змінних спостерігається, то загроза виникнення автокореляції залишків стає реальністю.
58. Наслідки автокореляції
Автокореляція – це явище, яке вказує на інерційність процесів, які проходять в економіці.
Якщо знехтувати автокореляцією залишків і оцінити параметри моделі за МНК, то отримаємо наступні наслідки:
1. Оцінки параметрів моделі можуть бути неефективними, тобто вибіркові дисперсії можуть бути невиправдано великими.
2. Оскільки вибіркові дисперсії обчислюються не за уточненими формулами, то статистичні критерії t- і F-cтатистики, які знайдено для лінійної моделі, практично не можуть бути використані в дисперсійному аналізі.
3. Неефективність оцінок параметрів економетричної моделі призводить, як правило, до неефективних прогнозів, тобто прогнозів з дуже великою вибірковою дисперсією.
Якщо в економічній моделі має місце автокореляція, то можна записати:
,
(1.1)
де t –індекс, який вказує на приналежність до часового ряду
-
коефіцієнти пропорційності.
