
- •1. Особливості та принципи економетри моделювання економ систем і процесів.
- •2. Поняття економетричної моделі її складові
- •3. Причина,які спонукають появу стохастичної складової
- •4. Етапи побудови економетричної моделі
- •6. Модель пропозиції та попиту
- •7. Модель Кейнса
- •8. Прогнозування: суть методи, класифыкацыйны ознаки
- •9. Використання економетричних моделей для прийняття управлінських рішень
- •10. Метод найменших квадратів та передумови його використання
- •12. Властивості оцінок параметрів
- •13. Умови Гаусса-Маркова для економетричних моделей парної та множинної регресії
- •14. Економетрична модель парної лінійної регресії
- •15. Оцінювання параметрів парної регресійної економетричної моделі за мнк
- •16. Розрахунок та аналіз значень коефіцієнтів детермінації та кореляції.
- •17. Перевірка адекватності моделі парної регресії та статистичної значимості оцінок її параметрів, коєфіцієнтів детермінації та кореляції.
- •18. Перевірка значущості оцінок параметрів моделі та побудова довірчих інтервалівдля оцінок параметрів моделі
- •19. Прогнозування на основі економетричних моделей парної регресії. Точкових та інтервальних прогноз.
- •20 Економчних аналіз моделі парної регресії: середня ефективність впливу чинників, гранична ефективність та коефіцієнти еластичності
- •21)Економетрична модель множинної лінійної регресії.
- •22)Оцінювання параметрів множинної регресійної економетричної моделі за мнк.
- •23)Коефіцієнти детермінації та кореляції множинної економетричної моделі, їх аналіз. Скоригований коефіцієнт детермінації.
- •Перевірка гіпотез про статистичну значимість лінійної моделі множинної регресії, коефіцієнтів регресії, коефіцієнта детермінації, коефіцієнта кореляції.
- •Перевірка гіпотез про значення коефіцієнтів регресії множинної регресійної моделі. Інтервали надійності для коефіцієнтів множинної регресії. ;
- •26.Прогнозування на сонові економетрични моделей множинної регресії. Точковий та інтервальний прогноз
- •27.Економічний аналіз моделі множинної регресії: середня ефективність впливу чинників, гранична ефективність, коефіцієнти еластичності.
- •28Нелінійні моделі. Лінеаризація нелінійних моделей.
- •29.Поліноміальні модель, побудова оцінок її параметрів.
- •30. Гіперболічна модель
- •31. Показникові моделі, побудова оцінок її параметрів.
- •Виробнича функція Кобба-Дугласа, побудова оцінок її параметрів.
- •Метод максимальної правдоподібності.
- •34.Застосування нелінійних функцій в економіці
- •35. Врахування якісних факторів в лінійних економетричних моделях за допомогою фіктивних змінних.
- •Моделі з фіктивними незалежними змінними: моделі, що містять тільки якісні незалежні змінні.
- •37/Моделі з фіктивними незалежними змінними: моделі в яких незалежні змінні носять як якісний так і кількісний характер.
- •38) Порівняння 2-х регресій. Тест Чоу.
- •39. Моделі з фіктивними залежними змінними. Модель lpm
- •41. Моделі з порушенням передумов використання мнк: мультиколінеарність
- •42. Cуть мультиколінеарності
- •43. Наслідки мультиколінеарності
- •44. Ознаки регресійної моделі які вказують на наявність мультиколінеарності
- •45 .Алгоритм Фаррара - Глобера
- •46. Методи звільнення від мультиколінеарност.
- •47 Метод гребеневої регресії усунення мультиколінеарності.
- •48. Моделі з порушенням передумов використання мнк: гетероскедастичність залишків.
- •49. Суть гетероскедастичності
- •50. Наслідки гетероскедастичності
- •51 .Методи визначення гетероскедастичності, тест рангової кореляції Спірмена
- •52.Методи виявлення гетероскедастичності, тест Парка
- •53.Методи виявлення гетероскедастичності, тест Голдфелда-Квандта.
- •55.Метод зважених найменших квадратів оцінювання параметрів моделі з гетероскедастичними залишками при невідомих дисперсіях відхилень спостережень.
- •56. Моделі з порушенням передумов використання мнк: автокореляція залишків.
- •57. Суть автокореляції
- •58. Наслідки автокореляції
- •59. Способи визначення автокореляції залишків. Критерій Дарбіна – Уотсона
- •60.Крім критерію Дарбіна – Уотсона використовують також критерій фон Неймана:
- •61. Нециклічний коефіцієнт автокореляції
- •62. Метод Ейткена
- •63. Метод перетворення вихідної інформації
- •Поняття часового ряду та специфікація його дослідження. Основні компоненти часового ряду.
- •65. Часові ряди та їх основні числові характеристики.
- •66. Вирівнювання часових рядів. Ковзні середні й автокореляція
55.Метод зважених найменших квадратів оцінювання параметрів моделі з гетероскедастичними залишками при невідомих дисперсіях відхилень спостережень.
Трансформація еквівалентна застосуванню зваженого методу найменших квадратів (ЗМНК), який є особливим випадком узагальненого методу найменших квадратів (УМНК). Суть ЗМНК полягає в мінімізації зваженої суми квадратичних відхилень:
ЗМНК, застосований до початкової моделі, дає такі самі результати, що й МНК, застосований до трансформованої моделі.
Твердження. Оцінки трансформованої моделі мають меншу дисперсію (ефективніші), ніж оцінки, отримані із застосуванням МНК до початкової моделі.
Гетероскедастичність може існувати за рахунок неврахованих факторів (поганої специфікації моделі). У цьому разі можливим рішенням є включення неврахованих факторів у модель. Сліпе застосування трансформації (без аналізу причин гетероскедастичності) зробить гомоскедастичною випадкову змінну, однак оцінки параметрів залишаться неправильними через неврахування важливих факторів.
Оцінювання параметрів багатофакторної регресійної моделі на основі узагальненого методу найменших квадратів
За наявності гетероскедастичності для оцінювання параметрів моделі доцільно застосувати узагальнений метод найменших квадратів (метод Ейткена), вектор оцінювання якого має вигляд
Вектор a містить незміщену лінійну оцінку параметрів моделі, яка має найменшу дисперсію і матрицю коваріацій:
Для отримання УМНК-оцінок необхідно знати коваріаційну матрицю S вектора похибок, яка на практиці дуже рідко відома. Тому природно спершу оцінити матрицю S, а потім застосувати її оцінку у формулі. Цей підхід є суть узагальненого методу найменших квадратів.
Визначення матриці S. Оскільки явище гетероскедастичності пов’язане лише з тим, що змінюються дисперсії залишків, а коваріація між ними відсутня, то матриця S має бути діагональною, а саме
Зазначимо, що матриця S залежить від специфічної форми гетероскедастичності й може бути розрахована виходячи з припущень про залежність похибок від однієї із незалежних змінних .
отже, неможливо оцінити значущість параметрів;
2) неможливо побудувати довірчий інтервал для прогнозних значень у ;
3) отримані за МНК оцінки параметрів регресії не є ефективними (не мають найменшої дисперсії).
Зазначимо, що якщо незважаючи на гетероскедастичність ми використовуватимемо звичайні процедури перевірки гіпотез, то висновки можуть бути неправильними. Зрозуміло, гетероскедастичність є суттєвою проблемою, а тому потрібно вміти з’ясовувати її наявність.
56. Моделі з порушенням передумов використання мнк: автокореляція залишків.
Часто
при побудові економетричної моделі
стикаються з порушенням другої необхідної
умови для застосування 1МНК, коли
де матриця S
(n ´ n)
характеризує коваріації між залишками,
а дисперсія лишається сталою. Це
явище спостерігається насамперед тоді,
коли економетрична модель будується
на основі часових рядів і називається
автокореляцією залишків.
Виникнення автокореляції залишків пов’язане ось із чим:
1) автокореляцією послідовних елементів векторів залежної і незалежних змінних;
2) автокореляцією послідовних значень змінної (змінних), які не ввійшли до економетричної моделі;
3) помилковою специфікацією економетричної моделі.
Оскільки коваріація послідовних значень залишків подається у вигляді
,
то друга з необхідних умов записується так:
де
S
— матриця коефіцієнтів коваріацій
s-го
порядку для елементів ряду ut
або
де
.
За наявності автокореляції залишків оцінювання параметрів моделі 1МНК може мати такі результати:
1) оцінки параметрів моделі будуть зміщеними;
2) статистичні критерії Стьюдента (t-критерій) і Фішера (F-критерій) не можуть бути використані в дисперсійному аналізі економетричної моделі;
3) неефективність оцінок параметрів економетричної моделі призводить до неефективних прогнозів.