
- •Упругие волны. Волновой процесс.
- •Уравнение плоской бегущей волны
- •Связь групповой и фазовой скорости
- •Звуковые волны (акустические волны)
- •Интенсивность звука (сила звука)
- •Эффект Доплера
- •Электромагнитные волны
- •3). Если
- •Дифракция света Принцип Гюйгенса — Френеля
- •Метод зон Френеля (1)
- •Дифракция Френеля на круглом отверстии и диске
- •Дифракция Фраунгофера на щели (дифракция в параллельных лучах)
- •Дифракция Фраунгофера на дифракционной решетке
- •Число максимумов, даваемое дифракционной решеткой
- •Дифракция на пространственной решетке Пространственная (трехмерная) решетка
- •Ф ормула Вульфа—Брэггов
- •Критерий Рэлея. Разрешающая способность спектрального прибора
- •Разрешающая способность спектрального прибора
- •Разрешающая способность дифракционной решетки
- •Поляризация света Естественный и поляризованный свет
- •Закон Малюса. Прохождение света через два поляризатора Степень поляризации света
- •Д войное лучепреломление
- •Пластинка в четверть волны (пластинка λ/4)
- •Анализ поляризованного света
- •Искусственная оптическая анизотропия
- •Закон Брюстера
- •Применение поляризованного света
- •Тепловое излучение и его характеристики
- •Характеристики теплового излучения
- •Закон Стефана – Больцмана
- •Вольт – амперная характеристика фотоэффекта.
- •Законы Столетова.
- •Применение фотоэффекта
- •Постулаты Бора.
- •Опыты Франка и Герца.
- •Элементы квантовой механики
- •Соотношения неопределенностей.
- •Описание микрочастиц с помощью волновой функции.
- •Общее уравнение Шредингера
- •Какое уравнение должно описывать движение микрочастиц?
- •Движение свободной частицы
- •Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- •Уравнения Шредингера для стационарных состояний
- •Линейный гармонический осциллятор в квантовой механике
- •Квантовые числа
- •Спин электрона. Спиновое квантовое число Опыты Штерна и Герлаха
- •Спин электрона
- •Принцип неразличимости тождественных частиц. Фермионы и бозоны
- •Принцип Паули. Распределение электронов в атоме по состояниям
- •Сплошной (тормозной) рентгеновский спектр
- •Характеристический рентгеновский спектр. Закон Мозли
- •Молекулы: химические связи, понятие об энергетических уровнях
- •Молекулярные спектры
- •Понятие о квантовой статистике. Бозе-Эйнштейна и Ферми-Дирака.
- •Элементы квантовой теории металлов.
- •Основные положения квантовой теории металлов.
- •Квантование энергии свободных электронов в металлах.
- •Функция распределения Ферми и её статистический смысл.
- •Металлы, диэлектрики, полупроводники.
- •Полупроводниковые диоды
Сплошной (тормозной) рентгеновский спектр
Рентгеновское излучение
Источник рентгеновского излучения—рентгеновская трубка. Ускоренные электрическим полем электроны бомбардируют анод (металлическая мишень из тяжелых металлов, например W или Pt), испытывая на нем резкое торможение. При этом возникает рентгеновское излучение, представляющее собой электромагнитные волны с длиной волны примерно 10-12—10-8 м. Волновая природа рентгеновского излучения доказана опытами по его дифракции.
Рентгеновский спектр
Наложение сплошного спектра (см. рисунок), ограниченного со стороны коротких длин волн некоторой границей, называемой границей сплошного спектра, и линейчатого спектра — совокупности отдельных линий, появляющихся на фоне сплошного спектра.
Сплошной (тормозной) спектр
Испускается бомбардирующими анод электронами в результате их торможения при взаимодействии с атомами мишени. Не зависит от материала анода, а определяется только энергией бомбардирующих анод электронов. Согласно классической теории, действительно при торможении движущихся зарядов должно возникать излучение со сплошным спектром.
К
оротковолновая
граница сплошного спектра
Из классической теории существование λmin не вытекает. Из опыта: чем больше кинетическая энергия электронов, вызывающих тормозное рентгеновское излучение, тем меньше λmin Согласно квантовой теории, предельная энергия кванта соответствует такому случаю торможения, при котором вся кинетическая энергия электрона переходит в энергию кванта, т. е.
• где U — разность
потенциалов, за счет которой электрону
сообщается энергия Еmax,
— частота, соответствующая границе
сплошного спектра. Тогда
что полностью соответствует экспериментальным данным.
Характеристический рентгеновский спектр. Закон Мозли
При достаточно большой энергии бомбардирующих анод электронов на фоне сплошного спектра появляются отдельные резкие линии — линейчатый спектр, определяемый материалом анода, — характеристический рентгеновский спектр.
Эти спектры
совершенно однотипны и состоят из
нескольких серий, обозначаемых К, L,
M, N и О. Каждая серия, в свою очередь,
содержит небольшой набор отдельных
линий, обозначаемых в порядке убывания
длины волны индексами α,β,γ,... (Кα,
Kβ,
Kγ...,
Lα,
Lβ,
Lγ,
...) (см. рисунок). Возникновение
характ
еристических
рентгеновских спектров связано с
процессами, происходящими во внутренних,
застроенных электронных оболочках
атомов, которые имеют сходное строение.
Самой длинноволновой линией K-серии является линия Кα. Частоты линий возрастают в ряду Кα → Kβ→Kγ, поскольку энергия, высвобождаемая при переходе электрона на К-оболочку с более удаленных оболочек, увеличивается. Наоборот, интенсивности линий в ряду Кα → Kβ→Kγ убывают, так как вероятность переходов электронов с L,-оболочки на K-оболочку больше, чем с более удаленных оболочек М и N. K-серия сопровождается обязательно другими сериями, так как при испускании ее линий появляются вакансии в оболочках L, М,..., которые будут заполняться электронами, находящимися на более высоких уровнях.
З
акон
Мозли
определяет число спектральных линий характеристического рентгеновского излучения
Для линии Кα (σ=1);
[R — постоянная Ридберга; Z — порядковый номер элемента в периодической системе; σ — постоянная экранирования; m характеризует рентгеновскую серию (m = 1, 2, 3, ...); n определяет отдельные линии соответствующей серии (n =m+1, m + 2,...)].
Смысл постоянной экранирования заключается в том, что на электрон, совершающий переход, соответствующий некоторой линии, действует не весь заряд ядра Ze, а заряд (Z- σ)е, ослабленный экранирующим действием других электронов.