
- •Упругие волны. Волновой процесс.
- •Уравнение плоской бегущей волны
- •Связь групповой и фазовой скорости
- •Звуковые волны (акустические волны)
- •Интенсивность звука (сила звука)
- •Эффект Доплера
- •Электромагнитные волны
- •3). Если
- •Дифракция света Принцип Гюйгенса — Френеля
- •Метод зон Френеля (1)
- •Дифракция Френеля на круглом отверстии и диске
- •Дифракция Фраунгофера на щели (дифракция в параллельных лучах)
- •Дифракция Фраунгофера на дифракционной решетке
- •Число максимумов, даваемое дифракционной решеткой
- •Дифракция на пространственной решетке Пространственная (трехмерная) решетка
- •Ф ормула Вульфа—Брэггов
- •Критерий Рэлея. Разрешающая способность спектрального прибора
- •Разрешающая способность спектрального прибора
- •Разрешающая способность дифракционной решетки
- •Поляризация света Естественный и поляризованный свет
- •Закон Малюса. Прохождение света через два поляризатора Степень поляризации света
- •Д войное лучепреломление
- •Пластинка в четверть волны (пластинка λ/4)
- •Анализ поляризованного света
- •Искусственная оптическая анизотропия
- •Закон Брюстера
- •Применение поляризованного света
- •Тепловое излучение и его характеристики
- •Характеристики теплового излучения
- •Закон Стефана – Больцмана
- •Вольт – амперная характеристика фотоэффекта.
- •Законы Столетова.
- •Применение фотоэффекта
- •Постулаты Бора.
- •Опыты Франка и Герца.
- •Элементы квантовой механики
- •Соотношения неопределенностей.
- •Описание микрочастиц с помощью волновой функции.
- •Общее уравнение Шредингера
- •Какое уравнение должно описывать движение микрочастиц?
- •Движение свободной частицы
- •Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- •Уравнения Шредингера для стационарных состояний
- •Линейный гармонический осциллятор в квантовой механике
- •Квантовые числа
- •Спин электрона. Спиновое квантовое число Опыты Штерна и Герлаха
- •Спин электрона
- •Принцип неразличимости тождественных частиц. Фермионы и бозоны
- •Принцип Паули. Распределение электронов в атоме по состояниям
- •Сплошной (тормозной) рентгеновский спектр
- •Характеристический рентгеновский спектр. Закон Мозли
- •Молекулы: химические связи, понятие об энергетических уровнях
- •Молекулярные спектры
- •Понятие о квантовой статистике. Бозе-Эйнштейна и Ферми-Дирака.
- •Элементы квантовой теории металлов.
- •Основные положения квантовой теории металлов.
- •Квантование энергии свободных электронов в металлах.
- •Функция распределения Ферми и её статистический смысл.
- •Металлы, диэлектрики, полупроводники.
- •Полупроводниковые диоды
Вольт – амперная характеристика фотоэффекта.
При излучении вольт- амперных характеристик разнообразных материалов были установлены 3 закона внешнего фотоэффекта.
Законы Столетова.
Сила фототока насыщения пропорциональна электрической освещенности:
i ~ Ee
Максимальная кинетическая энергия фотоэлектронов пропорциональна частоте излучения, вызывающего фотоэффект и не зависит от интенсивности света:
’
где а – универсальный коэффициент пропорциональности не зависящий от вещества,
b – константа, зависящая от природы катода.
Для каждого вещества существует «красная граница» фотоэффекта, т.е. минимальная частота ν0 света (или max λ) при которой еще наблюдается фотоэффект.
Волновая теория оказалась бессильной объяснить закономерности фотоэффекта. Все её предсказания не согласуются с экспериментом.
Объяснение законов фотоэффекта было дано Эйнштейном в 1905г.
Он разработал фотонную теорию света, которая явилась дальнейшим развитием идеи Планка о дискретном характере излучателей света.
По Эйнштейну свет, частотой ν не только испускается, как это предлагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами). Эти кванты интерферируют, дифрагируют поглощаются как единое целое. Они получили названия фотоны (квант света). Каждый фотон с частотой ν обладает энергией:
Е = hν
Механизм
фотоэффекта состоит в следующем:
электрон, взаимодействуя с фотоном,
поглощает его (фотон). Кинетическая
энергия электрона увеличивается на
величину энергии фотона hν.
Передача энергии осуществляется
мгновенно. Энергия падающего фотона
расходуется на совершение электроном
работы выхода А из металла и на сообщение
вылетевшему фотоэлектрону кинетической
энергии
уравнение
Эйнштейна для
внешнего фотоэффекта
в случае «красной границы»
Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу.
В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости или э.д.с.
В отличие от фотоэлемента с внешним фотоэффектом фотоэлементы с внутренним фотоэффектом (их называют фотосопротивления) не обладают током насыщения, их чувствительность в сотни и тысячи раз больше, чем чувствительность фотоэлементов с внешним фотоэффектом.
Вентильный фотоэффект – (фотогальванический) возникновение фото э.д.с. при освещении контакта двух разных полупроводников или п/п из металла.
Вентильный фотоэффект открывает возможности для преобразования солнечной энергии в электрическую ( электромобиль на солнечных батареях).
Фотоэффект
Внешний Внутренний Вентильный
Увеличение электропроводимости
Возникновение фотоэдс
Фоторезисторы
Солнечные батареи
Измерения в инфракрасной
области